Cargando…
Ovarian Malignancies Frequency in the Female Population from the Bryansk Region Living in Conditions of Radioactive, Chemical and Combine Contamination (2000–2020)
Background: Radioactive contamination and chemical pollution of the environment can affect the processes of carcinogenesis, including the formation of malignant neoplasms of the ovaries in women. We used the data of official state statistics for 2000–2020 to test the hypothesis about the effect of r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622314/ https://www.ncbi.nlm.nih.gov/pubmed/34833147 http://dx.doi.org/10.3390/life11111272 |
Sumario: | Background: Radioactive contamination and chemical pollution of the environment can affect the processes of carcinogenesis, including the formation of malignant neoplasms of the ovaries in women. We used the data of official state statistics for 2000–2020 to test the hypothesis about the effect of radioactive contamination (following the Chernobyl disaster) and chemical pollutants on the incidence of ovarian malignancies in the female population of the Bryansk region. Methods: A variety of statistical approaches were used to estimate the incidence of ovarian malignancies, including the Shapiro–Wilk test, Mann–Whitney U test, Spearman’s rank correlation test and linear regression. Results: We did not establish statistically significant differences in the frequency of primary morbidity of women with malignant neoplasms of the ovaries, regardless of the environmental conditions of living. Furthermore, no significant correlations were found between the frequency of primary morbidity of ovarian malignancies, both with the level of contamination by Cesium-137 and Strontium-90, and air pollution with volatile organic compounds, carbon monoxide, sulfur dioxide and nitrogen oxides. A statistically significant increase in the long-term trend in the frequency of ovarian malignant neoplasms was revealed in the areas of chemical pollution (p = 0.02), however, in other territories, no statistically significant regularities were established. The forecast of the frequency of newly diagnosed malignant neoplasms of the ovaries on average in the Bryansk region shows an increase of 12.4% in 2020 in comparison with the real data for 2020, while the largest increase in predicted values is recorded in the territories of radioactive contamination (by 79.6%), and the least in the combined territories (by 6.9%). Conclusions: The results obtained indicate the need for further work to understand the trends in the presence/absence of independent and combined effects of pollutants and the growth of oncogynecological pathology from the perspective of assessing the distant and regional metastasis, histological and immunohistochemical profile of a specific malignant ovarian neoplasm with levels of environmental contamination. |
---|