Cargando…
Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application
To improve the energy harvesting efficiency of the piezoelectric device, a stack units-based structure was developed and verified. Factors such as stress distribution, load resistance, loads, and loading times influencing the piezoelectric properties were investigated using theoretical analysis and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622338/ https://www.ncbi.nlm.nih.gov/pubmed/34833781 http://dx.doi.org/10.3390/s21227708 |
_version_ | 1784605670422609920 |
---|---|
author | Li, Chenchen Yang, Fan Liu, Pengfei Fu, Chaoliang Liu, Quan Zhao, Hongduo Lin, Peng |
author_facet | Li, Chenchen Yang, Fan Liu, Pengfei Fu, Chaoliang Liu, Quan Zhao, Hongduo Lin, Peng |
author_sort | Li, Chenchen |
collection | PubMed |
description | To improve the energy harvesting efficiency of the piezoelectric device, a stack units-based structure was developed and verified. Factors such as stress distribution, load resistance, loads, and loading times influencing the piezoelectric properties were investigated using theoretical analysis and experimental tests. The results show that the unit number has a negative relationship with the generated energy and the stress distribution has no influence on the power generation of the piezoelectric unit array. However, with a small stress difference, units in a parallel connection can obtain high energy conversion efficiency. Additionally, loaded with the matched impedance of 275.0 kΩ at 10.0 kN and 10.0 Hz, the proposed device reached a maximum output power of 84.3 mW, which is enough to supply the low-power sensors. Moreover, the indoor load test illustrates that the electrical performance of the piezoelectric device was positively correlated with the simulated loads when loaded with matched resistance. Furthermore, the electrical property remained stable after the fatigue test of 100,000 cyclic loads. Subsequently, the field study confirmed that the developed piezoelectric device had novel piezoelectric properties with an open-circuit voltage of 190 V under an actual tire load, and the traffic parameters can be extracted from the voltage waveform. |
format | Online Article Text |
id | pubmed-8622338 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86223382021-11-27 Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application Li, Chenchen Yang, Fan Liu, Pengfei Fu, Chaoliang Liu, Quan Zhao, Hongduo Lin, Peng Sensors (Basel) Article To improve the energy harvesting efficiency of the piezoelectric device, a stack units-based structure was developed and verified. Factors such as stress distribution, load resistance, loads, and loading times influencing the piezoelectric properties were investigated using theoretical analysis and experimental tests. The results show that the unit number has a negative relationship with the generated energy and the stress distribution has no influence on the power generation of the piezoelectric unit array. However, with a small stress difference, units in a parallel connection can obtain high energy conversion efficiency. Additionally, loaded with the matched impedance of 275.0 kΩ at 10.0 kN and 10.0 Hz, the proposed device reached a maximum output power of 84.3 mW, which is enough to supply the low-power sensors. Moreover, the indoor load test illustrates that the electrical performance of the piezoelectric device was positively correlated with the simulated loads when loaded with matched resistance. Furthermore, the electrical property remained stable after the fatigue test of 100,000 cyclic loads. Subsequently, the field study confirmed that the developed piezoelectric device had novel piezoelectric properties with an open-circuit voltage of 190 V under an actual tire load, and the traffic parameters can be extracted from the voltage waveform. MDPI 2021-11-19 /pmc/articles/PMC8622338/ /pubmed/34833781 http://dx.doi.org/10.3390/s21227708 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Chenchen Yang, Fan Liu, Pengfei Fu, Chaoliang Liu, Quan Zhao, Hongduo Lin, Peng Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application |
title | Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application |
title_full | Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application |
title_fullStr | Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application |
title_full_unstemmed | Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application |
title_short | Development and Piezoelectric Properties of a Stack Units-Based Piezoelectric Device for Roadway Application |
title_sort | development and piezoelectric properties of a stack units-based piezoelectric device for roadway application |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622338/ https://www.ncbi.nlm.nih.gov/pubmed/34833781 http://dx.doi.org/10.3390/s21227708 |
work_keys_str_mv | AT lichenchen developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication AT yangfan developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication AT liupengfei developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication AT fuchaoliang developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication AT liuquan developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication AT zhaohongduo developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication AT linpeng developmentandpiezoelectricpropertiesofastackunitsbasedpiezoelectricdeviceforroadwayapplication |