Cargando…

A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets

Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencode...

Descripción completa

Detalles Bibliográficos
Autores principales: Pintelas, Emmanuel, Livieris, Ioannis E., Pintelas, Panagiotis E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622369/
https://www.ncbi.nlm.nih.gov/pubmed/34833805
http://dx.doi.org/10.3390/s21227731
_version_ 1784605677564461056
author Pintelas, Emmanuel
Livieris, Ioannis E.
Pintelas, Panagiotis E.
author_facet Pintelas, Emmanuel
Livieris, Ioannis E.
Pintelas, Panagiotis E.
author_sort Pintelas, Emmanuel
collection PubMed
description Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images.
format Online
Article
Text
id pubmed-8622369
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86223692021-11-27 A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets Pintelas, Emmanuel Livieris, Ioannis E. Pintelas, Panagiotis E. Sensors (Basel) Article Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencoders constitute an unsupervised dimensionality reduction technique, proven to filter out noise and redundant information and create robust and stable feature representations. In this work, in order to resolve the problem of DL models’ vulnerability, we propose a convolutional autoencoder topological model for compressing and filtering out noise and redundant information from initial high dimensionality input images and then feeding this compressed output into convolutional neural networks. Our results reveal the efficiency of the proposed approach, leading to a significant performance improvement compared to Deep Learning models trained with the initial raw images. MDPI 2021-11-20 /pmc/articles/PMC8622369/ /pubmed/34833805 http://dx.doi.org/10.3390/s21227731 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pintelas, Emmanuel
Livieris, Ioannis E.
Pintelas, Panagiotis E.
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_full A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_fullStr A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_full_unstemmed A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_short A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
title_sort convolutional autoencoder topology for classification in high-dimensional noisy image datasets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622369/
https://www.ncbi.nlm.nih.gov/pubmed/34833805
http://dx.doi.org/10.3390/s21227731
work_keys_str_mv AT pintelasemmanuel aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT livierisioannise aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT pintelaspanagiotise aconvolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT pintelasemmanuel convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT livierisioannise convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets
AT pintelaspanagiotise convolutionalautoencodertopologyforclassificationinhighdimensionalnoisyimagedatasets