Cargando…
A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
Deep convolutional neural networks have shown remarkable performance in the image classification domain. However, Deep Learning models are vulnerable to noise and redundant information encapsulated into the high-dimensional raw input images, leading to unstable and unreliable predictions. Autoencode...
Autores principales: | Pintelas, Emmanuel, Livieris, Ioannis E., Pintelas, Panagiotis E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622369/ https://www.ncbi.nlm.nih.gov/pubmed/34833805 http://dx.doi.org/10.3390/s21227731 |
Ejemplares similares
-
Explainable Machine Learning Framework for Image Classification Problems: Case Study on Glioma Cancer Prediction
por: Pintelas, Emmanuel, et al.
Publicado: (2020) -
Explainable Image Similarity: Integrating Siamese Networks and Grad-CAM
por: Livieris, Ioannis E., et al.
Publicado: (2023) -
Investigating the Problem of Cryptocurrency Price Prediction: A Deep Learning Approach
por: Pintelas, Emmanuel, et al.
Publicado: (2020) -
Special Issue on Machine Learning and AI for Sensors
por: Pintelas, Panagiotis, et al.
Publicado: (2023) -
Smoothing and stationarity enforcement framework for deep learning time-series forecasting
por: Livieris, Ioannis E., et al.
Publicado: (2021)