Cargando…
Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection
Automatic flood detection may be an important component for triggering damage control systems and minimizing the risk of social or economic impacts caused by flooding. Riverside images from regular cameras are a widely available resource that can be used for tackling this problem. Nevertheless, stat...
Autores principales: | Fernandes Junior, Francisco Erivaldo, Nonato, Luis Gustavo, Ranieri, Caetano Mazzoni, Ueyama, Jó |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622476/ https://www.ncbi.nlm.nih.gov/pubmed/34833583 http://dx.doi.org/10.3390/s21227506 |
Ejemplares similares
-
How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data
por: Furquim, Gustavo, et al.
Publicado: (2018) -
Memory Offloading for Remote Attestation of Multi-Service IoT Devices †
por: Dushku, Edlira, et al.
Publicado: (2022) -
Sazgar IoT: A Device-Centric IoT Framework and Approximation Technique for Efficient and Scalable IoT Data Processing
por: Yavari, Ali, et al.
Publicado: (2023) -
Securing IoT Devices at CERN
por: Agarwal, Sharad
Publicado: (2018) -
IoT Device Integration and Payment via an Autonomic Blockchain-Based Service for IoT Device Sharing
por: Dawod, Anas, et al.
Publicado: (2022)