Cargando…
Towards Validating the Effectiveness of Obstructive Sleep Apnea Classification from Electronic Health Records Using Machine Learning
Obstructive sleep apnea (OSA) is a common, chronic, sleep-related breathing disorder characterized by partial or complete airway obstruction in sleep. The gold standard diagnosis method is polysomnography, which estimates disease severity through the Apnea-Hypopnea Index (AHI). However, this is expe...
Autores principales: | Ramesh, Jayroop, Keeran, Niha, Sagahyroon, Assim, Aloul, Fadi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622500/ https://www.ncbi.nlm.nih.gov/pubmed/34828496 http://dx.doi.org/10.3390/healthcare9111450 |
Ejemplares similares
-
A remote healthcare monitoring framework for diabetes prediction using machine learning
por: Ramesh, Jayroop, et al.
Publicado: (2021) -
Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks
por: Ramesh, Jayroop, et al.
Publicado: (2021) -
A Machine Learning Approach to Predicting Diabetes Complications
por: Jian, Yazan, et al.
Publicado: (2021) -
Identifying Psychiatric Comorbidities for Obstructive Sleep Apnea in the Biomedical Literature and Electronic Health Record
por: Haddad, Jessica M., et al.
Publicado: (2017) -
Characterization of genetic and phenotypic heterogeneity of obstructive sleep apnea using electronic health records
por: Veatch, Olivia J., et al.
Publicado: (2020)