Cargando…
Transfer Learning Applied to Characteristic Prediction of Injection Molded Products
This study addresses some issues regarding the problems of applying CAE to the injection molding production process where quite complex factors inhibit its effective utilization. In this study, an artificial neural network, namely a backpropagation neural network (BPNN), is utilized to render result...
Autores principales: | Huang, Yan-Mao, Jong, Wen-Ren, Chen, Shia-Chung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622560/ https://www.ncbi.nlm.nih.gov/pubmed/34833173 http://dx.doi.org/10.3390/polym13223874 |
Ejemplares similares
-
A Methodology to Predict and Optimize Ease of Assembly for Injected Parts in a Family-Mold System
por: Huang, Chao-Tsai, et al.
Publicado: (2021) -
Effects of Injection Molding Process Parameters on the Chemical Foaming Behavior of Polypropylene and Polystyrene
por: Chung, Chen-Yuan, et al.
Publicado: (2021) -
Influence of Heat Sink on the Mold Temperature of Gypsum Mold Used in Injection Molding
por: Lin, Chung-Chih, et al.
Publicado: (2020) -
Effects of Injection Molding Parameters on Properties of Insert-Injection Molded Polypropylene Single-Polymer Composites
por: Wang, Jian, et al.
Publicado: (2021) -
The Investigation of Novel Dynamic Packing Technology for Injection Molded Part Quality Control and Its Production Stability by Using Real-Time PVT Control Method
por: Chang, Yung-Hsiang, et al.
Publicado: (2022)