Cargando…
Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle
Towards the goal of obtaining non-invasive biomarkers reflecting the anterior cruciate ligament’s (ACL) loading capacity, this project aimed to develop a magnetic resonance imaging (MRI)-based method facilitating the measurement of ACL elongations during the execution of knee stress tests. An MRI-co...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622620/ https://www.ncbi.nlm.nih.gov/pubmed/34829473 http://dx.doi.org/10.3390/diagnostics11112126 |
_version_ | 1784605736382234624 |
---|---|
author | Csapo, Robert Heinrich, Dieter Vigotsky, Andrew D. Marx, Christian Sinha, Shantanu Fink, Christian |
author_facet | Csapo, Robert Heinrich, Dieter Vigotsky, Andrew D. Marx, Christian Sinha, Shantanu Fink, Christian |
author_sort | Csapo, Robert |
collection | PubMed |
description | Towards the goal of obtaining non-invasive biomarkers reflecting the anterior cruciate ligament’s (ACL) loading capacity, this project aimed to develop a magnetic resonance imaging (MRI)-based method facilitating the measurement of ACL elongations during the execution of knee stress tests. An MRI-compatible, computer-controlled, and pneumatically driven knee loading device was designed to perform Lachman-like tests and induce ACL strain. A human cadaveric leg was used for test purposes. During the execution of the stress tests, a triggered real-time cine MRI sequence with a temporal resolution of 10 Hz was acquired in a parasagittal plane to capture the resultant ACL elongations. To test the accuracy of these measurements, the results were compared to in situ data of ACL elongation that were acquired by measuring the length changes of a surgical wire directly sutured to the ACL’s anteromedial bundle. The MRI-based ACL elongations ranged between 0.7 and 1.7 mm and agreed very well with in situ data (root mean square errors, RMSEs ≤ 0.25 mm), although peak elongation rates were underestimated by the MRI (RMSEs 0.19–0.36 mm/s). The high accuracy of elongation measurements underlines the potential of the technique to yield an imaging-based biomarker of the ACL’s loading capacity. |
format | Online Article Text |
id | pubmed-8622620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86226202021-11-27 Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle Csapo, Robert Heinrich, Dieter Vigotsky, Andrew D. Marx, Christian Sinha, Shantanu Fink, Christian Diagnostics (Basel) Article Towards the goal of obtaining non-invasive biomarkers reflecting the anterior cruciate ligament’s (ACL) loading capacity, this project aimed to develop a magnetic resonance imaging (MRI)-based method facilitating the measurement of ACL elongations during the execution of knee stress tests. An MRI-compatible, computer-controlled, and pneumatically driven knee loading device was designed to perform Lachman-like tests and induce ACL strain. A human cadaveric leg was used for test purposes. During the execution of the stress tests, a triggered real-time cine MRI sequence with a temporal resolution of 10 Hz was acquired in a parasagittal plane to capture the resultant ACL elongations. To test the accuracy of these measurements, the results were compared to in situ data of ACL elongation that were acquired by measuring the length changes of a surgical wire directly sutured to the ACL’s anteromedial bundle. The MRI-based ACL elongations ranged between 0.7 and 1.7 mm and agreed very well with in situ data (root mean square errors, RMSEs ≤ 0.25 mm), although peak elongation rates were underestimated by the MRI (RMSEs 0.19–0.36 mm/s). The high accuracy of elongation measurements underlines the potential of the technique to yield an imaging-based biomarker of the ACL’s loading capacity. MDPI 2021-11-16 /pmc/articles/PMC8622620/ /pubmed/34829473 http://dx.doi.org/10.3390/diagnostics11112126 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Csapo, Robert Heinrich, Dieter Vigotsky, Andrew D. Marx, Christian Sinha, Shantanu Fink, Christian Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle |
title | Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle |
title_full | Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle |
title_fullStr | Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle |
title_full_unstemmed | Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle |
title_short | Developing a Technique for the Imaging-Based Measurement of ACL Elongation: A Proof of Principle |
title_sort | developing a technique for the imaging-based measurement of acl elongation: a proof of principle |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622620/ https://www.ncbi.nlm.nih.gov/pubmed/34829473 http://dx.doi.org/10.3390/diagnostics11112126 |
work_keys_str_mv | AT csaporobert developingatechniquefortheimagingbasedmeasurementofaclelongationaproofofprinciple AT heinrichdieter developingatechniquefortheimagingbasedmeasurementofaclelongationaproofofprinciple AT vigotskyandrewd developingatechniquefortheimagingbasedmeasurementofaclelongationaproofofprinciple AT marxchristian developingatechniquefortheimagingbasedmeasurementofaclelongationaproofofprinciple AT sinhashantanu developingatechniquefortheimagingbasedmeasurementofaclelongationaproofofprinciple AT finkchristian developingatechniquefortheimagingbasedmeasurementofaclelongationaproofofprinciple |