Cargando…
Wireless Network Optimization for Federated Learning with Model Compression in Hybrid VLC/RF Systems †
In this paper, the optimization of network performance to support the deployment of federated learning (FL) is investigated. In particular, in the considered model, each user owns a machine learning (ML) model by training through its own dataset, and then transmits its ML parameters to a base statio...
Autores principales: | Huang, Wuwei, Yang, Yang, Chen, Mingzhe, Liu, Chuanhong, Feng, Chunyan, Poor, H. Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622686/ https://www.ncbi.nlm.nih.gov/pubmed/34828111 http://dx.doi.org/10.3390/e23111413 |
Ejemplares similares
-
Hybrid RF/VLC Network Architecture for the Internet of Things
por: Delgado-Rajo, Francisco, et al.
Publicado: (2020) -
A Review of Hybrid VLC/RF Networks: Features, Applications, and Future Directions
por: Bravo Alvarez, Lisandra, et al.
Publicado: (2023) -
A Hybrid VLC-RF Portable Phasor Measurement Unit for Deep Tunnels
por: Soto, Ismael, et al.
Publicado: (2020) -
Lead federated neuromorphic learning for wireless edge artificial intelligence
por: Yang, Helin, et al.
Publicado: (2022) -
Author Correction: Lead federated neuromorphic learning for wireless edge artificial intelligence
por: Yang, Helin, et al.
Publicado: (2022)