Cargando…
Ten Fast Transfer Learning Models for Carotid Ultrasound Plaque Tissue Characterization in Augmentation Framework Embedded with Heatmaps for Stroke Risk Stratification
Background and Purpose: Only 1–2% of the internal carotid artery asymptomatic plaques are unstable as a result of >80% stenosis. Thus, unnecessary efforts can be saved if these plaques can be characterized and classified into symptomatic and asymptomatic using non-invasive B-mode ultrasound. Earl...
Autores principales: | Sanagala, Skandha S., Nicolaides, Andrew, Gupta, Suneet K., Koppula, Vijaya K., Saba, Luca, Agarwal, Sushant, Johri, Amer M., Kalra, Manudeep S., Suri, Jasjit S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622690/ https://www.ncbi.nlm.nih.gov/pubmed/34829456 http://dx.doi.org/10.3390/diagnostics11112109 |
Ejemplares similares
-
Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application
por: Saba, Luca, et al.
Publicado: (2021) -
Unseen Artificial Intelligence—Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study
por: Jain, Pankaj K., et al.
Publicado: (2021) -
Cardiovascular disease/stroke risk stratification in deep learning framework: a review
por: Bhagawati, Mrinalini, et al.
Publicado: (2023) -
Attention-Based UNet Deep Learning Model for Plaque Segmentation in Carotid Ultrasound for Stroke Risk Stratification: An Artificial Intelligence Paradigm
por: Jain, Pankaj K., et al.
Publicado: (2022) -
A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review
por: Suri, Jasjit S., et al.
Publicado: (2022)