Cargando…
Taming the Chaos in Neural Network Time Series Predictions
Machine learning methods, such as Long Short-Term Memory (LSTM) neural networks can predict real-life time series data. Here, we present a new approach to predict time series data combining interpolation techniques, randomly parameterized LSTM neural networks and measures of signal complexity, which...
Autores principales: | Raubitzek, Sebastian, Neubauer, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622738/ https://www.ncbi.nlm.nih.gov/pubmed/34828122 http://dx.doi.org/10.3390/e23111424 |
Ejemplares similares
-
ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS
por: Laje, Rodrigo, et al.
Publicado: (2013) -
Chaos theory tamed
por: Williams, Garnett
Publicado: (2014) -
Combining Measures of Signal Complexity and Machine Learning for Time Series Analyis: A Review
por: Raubitzek, Sebastian, et al.
Publicado: (2021) -
An Exploratory Study on the Complexity and Machine Learning Predictability of Stock Market Data
por: Raubitzek, Sebastian, et al.
Publicado: (2022) -
Chaos and Predictability in Ionospheric Time Series
por: Materassi, Massimo, et al.
Publicado: (2023)