Cargando…
Region Adaptive Single Image Dehazing
Image haze removal is essential in preprocessing for computer vision applications because outdoor images taken in adverse weather conditions such as fog or snow have poor visibility. This problem has been extensively studied in the literature, and the most popular technique is dark channel prior (DC...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622803/ https://www.ncbi.nlm.nih.gov/pubmed/34828136 http://dx.doi.org/10.3390/e23111438 |
_version_ | 1784605779641237504 |
---|---|
author | Kim, Changwon |
author_facet | Kim, Changwon |
author_sort | Kim, Changwon |
collection | PubMed |
description | Image haze removal is essential in preprocessing for computer vision applications because outdoor images taken in adverse weather conditions such as fog or snow have poor visibility. This problem has been extensively studied in the literature, and the most popular technique is dark channel prior (DCP). However, dark channel prior tends to underestimate transmissions of bright areas or objects, which may cause color distortions during dehazing. This paper proposes a new single-image dehazing method that combines dark channel prior with bright channel prior in order to overcome the limitations of dark channel prior. A patch-based robust atmospheric light estimation was introduced in order to divide image into regions to which the DCP assumption and the BCP assumption are applied. Moreover, region adaptive haze control parameters are introduced in order to suppress the distortions in a flat and bright region and to increase the visibilities in a texture region. The flat and texture regions are expressed as probabilities by using local image entropy. The performance of the proposed method is evaluated by using synthetic and real data sets. Experimental results show that the proposed method outperforms the state-of-the-art image dehazing method both visually and numerically. |
format | Online Article Text |
id | pubmed-8622803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86228032021-11-27 Region Adaptive Single Image Dehazing Kim, Changwon Entropy (Basel) Article Image haze removal is essential in preprocessing for computer vision applications because outdoor images taken in adverse weather conditions such as fog or snow have poor visibility. This problem has been extensively studied in the literature, and the most popular technique is dark channel prior (DCP). However, dark channel prior tends to underestimate transmissions of bright areas or objects, which may cause color distortions during dehazing. This paper proposes a new single-image dehazing method that combines dark channel prior with bright channel prior in order to overcome the limitations of dark channel prior. A patch-based robust atmospheric light estimation was introduced in order to divide image into regions to which the DCP assumption and the BCP assumption are applied. Moreover, region adaptive haze control parameters are introduced in order to suppress the distortions in a flat and bright region and to increase the visibilities in a texture region. The flat and texture regions are expressed as probabilities by using local image entropy. The performance of the proposed method is evaluated by using synthetic and real data sets. Experimental results show that the proposed method outperforms the state-of-the-art image dehazing method both visually and numerically. MDPI 2021-10-30 /pmc/articles/PMC8622803/ /pubmed/34828136 http://dx.doi.org/10.3390/e23111438 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kim, Changwon Region Adaptive Single Image Dehazing |
title | Region Adaptive Single Image Dehazing |
title_full | Region Adaptive Single Image Dehazing |
title_fullStr | Region Adaptive Single Image Dehazing |
title_full_unstemmed | Region Adaptive Single Image Dehazing |
title_short | Region Adaptive Single Image Dehazing |
title_sort | region adaptive single image dehazing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622803/ https://www.ncbi.nlm.nih.gov/pubmed/34828136 http://dx.doi.org/10.3390/e23111438 |
work_keys_str_mv | AT kimchangwon regionadaptivesingleimagedehazing |