Cargando…
Data-Driven Model-Free Adaptive Control of Z-Source Inverters
The universal paradigm shift towards green energy has accelerated the development of modern algorithms and technologies, among them converters such as Z-Source Inverters (ZSI) are playing an important role. ZSIs are single-stage inverters which are capable of performing both buck and boost operation...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622841/ https://www.ncbi.nlm.nih.gov/pubmed/34833518 http://dx.doi.org/10.3390/s21227438 |
_version_ | 1784605788490170368 |
---|---|
author | Asadi, Yasin Ahmadi, Amirhossein Mohammadi, Sasan Amani, Ali Moradi Marzband, Mousa Mohammadi-ivatloo, Behnam |
author_facet | Asadi, Yasin Ahmadi, Amirhossein Mohammadi, Sasan Amani, Ali Moradi Marzband, Mousa Mohammadi-ivatloo, Behnam |
author_sort | Asadi, Yasin |
collection | PubMed |
description | The universal paradigm shift towards green energy has accelerated the development of modern algorithms and technologies, among them converters such as Z-Source Inverters (ZSI) are playing an important role. ZSIs are single-stage inverters which are capable of performing both buck and boost operations through an impedance network that enables the shoot-through state. Despite all advantages, these inverters are associated with the non-minimum phase feature imposing heavy restrictions on their closed-loop response. Moreover, uncertainties such as parameter perturbation, unmodeled dynamics, and load disturbances may degrade their performance or even lead to instability, especially when model-based controllers are applied. To tackle these issues, a data-driven model-free adaptive controller is proposed in this paper which guarantees stability and the desired performance of the inverter in the presence of uncertainties. It performs the control action in two steps: First, a model of the system is updated using the current input and output signals of the system. Based on this updated model, the control action is re-tuned to achieve the desired performance. The convergence and stability of the proposed control system are proved in the Lyapunov sense. Experiments corroborate the effectiveness and superiority of the presented method over model-based controllers including PI, state feedback, and optimal robust linear quadratic integral controllers in terms of various metrics. |
format | Online Article Text |
id | pubmed-8622841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86228412021-11-27 Data-Driven Model-Free Adaptive Control of Z-Source Inverters Asadi, Yasin Ahmadi, Amirhossein Mohammadi, Sasan Amani, Ali Moradi Marzband, Mousa Mohammadi-ivatloo, Behnam Sensors (Basel) Article The universal paradigm shift towards green energy has accelerated the development of modern algorithms and technologies, among them converters such as Z-Source Inverters (ZSI) are playing an important role. ZSIs are single-stage inverters which are capable of performing both buck and boost operations through an impedance network that enables the shoot-through state. Despite all advantages, these inverters are associated with the non-minimum phase feature imposing heavy restrictions on their closed-loop response. Moreover, uncertainties such as parameter perturbation, unmodeled dynamics, and load disturbances may degrade their performance or even lead to instability, especially when model-based controllers are applied. To tackle these issues, a data-driven model-free adaptive controller is proposed in this paper which guarantees stability and the desired performance of the inverter in the presence of uncertainties. It performs the control action in two steps: First, a model of the system is updated using the current input and output signals of the system. Based on this updated model, the control action is re-tuned to achieve the desired performance. The convergence and stability of the proposed control system are proved in the Lyapunov sense. Experiments corroborate the effectiveness and superiority of the presented method over model-based controllers including PI, state feedback, and optimal robust linear quadratic integral controllers in terms of various metrics. MDPI 2021-11-09 /pmc/articles/PMC8622841/ /pubmed/34833518 http://dx.doi.org/10.3390/s21227438 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Asadi, Yasin Ahmadi, Amirhossein Mohammadi, Sasan Amani, Ali Moradi Marzband, Mousa Mohammadi-ivatloo, Behnam Data-Driven Model-Free Adaptive Control of Z-Source Inverters |
title | Data-Driven Model-Free Adaptive Control of Z-Source Inverters |
title_full | Data-Driven Model-Free Adaptive Control of Z-Source Inverters |
title_fullStr | Data-Driven Model-Free Adaptive Control of Z-Source Inverters |
title_full_unstemmed | Data-Driven Model-Free Adaptive Control of Z-Source Inverters |
title_short | Data-Driven Model-Free Adaptive Control of Z-Source Inverters |
title_sort | data-driven model-free adaptive control of z-source inverters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622841/ https://www.ncbi.nlm.nih.gov/pubmed/34833518 http://dx.doi.org/10.3390/s21227438 |
work_keys_str_mv | AT asadiyasin datadrivenmodelfreeadaptivecontrolofzsourceinverters AT ahmadiamirhossein datadrivenmodelfreeadaptivecontrolofzsourceinverters AT mohammadisasan datadrivenmodelfreeadaptivecontrolofzsourceinverters AT amanialimoradi datadrivenmodelfreeadaptivecontrolofzsourceinverters AT marzbandmousa datadrivenmodelfreeadaptivecontrolofzsourceinverters AT mohammadiivatloobehnam datadrivenmodelfreeadaptivecontrolofzsourceinverters |