Cargando…
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks
In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model for computation in brains. The work inspired breakthroughs such as the first computer design and the theory of finite automata. We focus on learning in Hopfield networks, a special case with symmetric weights and...
Autores principales: | Hillar, Christopher, Chan, Tenzin, Taubman, Rachel, Rolnick, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622935/ https://www.ncbi.nlm.nih.gov/pubmed/34828192 http://dx.doi.org/10.3390/e23111494 |
Ejemplares similares
-
Robust Exponential Memory in Hopfield Networks
por: Hillar, Christopher J., et al.
Publicado: (2018) -
Novel local learning rule for neural adaptation fits Hopfield memory networks efficiently and optimally
por: Hillar, Chris, et al.
Publicado: (2013) -
Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study
por: Kim, Do-Hyun, et al.
Publicado: (2017) -
Hypergraphs and Cellular Networks
por: Klamt, Steffen, et al.
Publicado: (2009) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022)