Cargando…
Fusion-Learning of Bayesian Network Models for Fault Diagnostics
Bayesian Network (BN) models are being successfully applied to improve fault diagnosis, which in turn can improve equipment uptime and customer service. Most of these BN models are essentially trained using quantitative data obtained from sensors. However, sensors may not be able to cover all faults...
Autores principales: | Ademujimi, Toyosi, Prabhu, Vittaldas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622961/ https://www.ncbi.nlm.nih.gov/pubmed/34833709 http://dx.doi.org/10.3390/s21227633 |
Ejemplares similares
-
Digital Twin for Training Bayesian Networks for Fault Diagnostics of Manufacturing Systems
por: Ademujimi, Toyosi, et al.
Publicado: (2022) -
Sensor Selection Framework for Designing Fault Diagnostics System
por: Kulkarni, Amol, et al.
Publicado: (2021) -
Bayesian networks in fault diagnosis: practice and application
por: Cai, Baoping, et al.
Publicado: (2019) -
Leveraging Active Learning for Failure Mode Acquisition
por: Kulkarni, Amol, et al.
Publicado: (2023) -
Application of a Bayesian Network Based on Multi-Source Information Fusion in the Fault Diagnosis of a Radar Receiver
por: Liu, Boya, et al.
Publicado: (2022)