Cargando…
A Hierarchical Feature Extraction Network for Fast Scene Segmentation
Semantic segmentation is one of the most active research topics in computer vision with the goal to assign dense semantic labels for all pixels in a given image. In this paper, we introduce HFEN (Hierarchical Feature Extraction Network), a lightweight network to reach a balance between inference spe...
Autores principales: | Miao, Liu, Zhang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8622999/ https://www.ncbi.nlm.nih.gov/pubmed/34833809 http://dx.doi.org/10.3390/s21227730 |
Ejemplares similares
-
Inter-Level Feature Balanced Fusion Network for Street Scene Segmentation
por: Li, Dongqian, et al.
Publicado: (2021) -
Multiscale and Hierarchical Feature-Aggregation Network for Segmenting Medical Images
por: Yamanakkanavar, Nagaraj, et al.
Publicado: (2022) -
Multi-Level and Multi-Scale Feature Aggregation Network for Semantic Segmentation in Vehicle-Mounted Scenes
por: Liao, Yong, et al.
Publicado: (2021) -
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Spatiotemporal bias of the human gaze toward hierarchical visual features during natural scene viewing
por: Akamatsu, Kazuaki, et al.
Publicado: (2023)