Cargando…
A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice
We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HF...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623014/ https://www.ncbi.nlm.nih.gov/pubmed/34835983 http://dx.doi.org/10.3390/nu13113726 |
_version_ | 1784605829900533760 |
---|---|
author | Nederveen, Joshua P. Manta, Katherine Bujak, Adam L. Simone, Alexander C. Fuda, Matthew R. Nilsson, Mats I. Hettinga, Bart P. Hughes, Meghan C. Perry, Christopher G. R. Tarnopolsky, Mark A. |
author_facet | Nederveen, Joshua P. Manta, Katherine Bujak, Adam L. Simone, Alexander C. Fuda, Matthew R. Nilsson, Mats I. Hettinga, Bart P. Hughes, Meghan C. Perry, Christopher G. R. Tarnopolsky, Mark A. |
author_sort | Nederveen, Joshua P. |
collection | PubMed |
description | We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HFD; ~60% fat) for 6 weeks, with subsequent allocation into experimentalgroups for 4 weeks: HFD control, HFD + ME10 (10 components), HFD + ME7 (7 components), HFD + ME10 + EX, HFD + EX (where ‘+EX’ animals exercised 3 days/week), and chow-fed control. After the intervention, HFD control animals had significantly greater body weight and fat mass. Despite the continuation of HFD, animals supplemented with multi-ingredient ME or who performed exercise training showed an attenuation of fat mass and preservation of lean body mass, which was further enhanced when combined (ME+EX). ME supplementation stimulated the upregulation of white and brown adipose tissue mRNA transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and fat metabolism. In WAT depots, this was mirrored by mitochodrial oxidative phosphorylation (OXPHOS) protein expression, and increased in vivo fat oxidation measured via CLAMS. ME supplementation also decreased systemic and local inflammation markers. Herein, we demonstrated that novel multi-ingredient nutritional supplements induced significant fat loss independent of physical activity while preserving muscle mass in obese mice. Mechanistically, these MEs appear to act by inducing a browning program in white adipose tissue and decreasing other pathophysiological impairments associated with obesity, including mitochondrial respiration alterations induced by HFD. |
format | Online Article Text |
id | pubmed-8623014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86230142021-11-27 A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice Nederveen, Joshua P. Manta, Katherine Bujak, Adam L. Simone, Alexander C. Fuda, Matthew R. Nilsson, Mats I. Hettinga, Bart P. Hughes, Meghan C. Perry, Christopher G. R. Tarnopolsky, Mark A. Nutrients Article We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HFD; ~60% fat) for 6 weeks, with subsequent allocation into experimentalgroups for 4 weeks: HFD control, HFD + ME10 (10 components), HFD + ME7 (7 components), HFD + ME10 + EX, HFD + EX (where ‘+EX’ animals exercised 3 days/week), and chow-fed control. After the intervention, HFD control animals had significantly greater body weight and fat mass. Despite the continuation of HFD, animals supplemented with multi-ingredient ME or who performed exercise training showed an attenuation of fat mass and preservation of lean body mass, which was further enhanced when combined (ME+EX). ME supplementation stimulated the upregulation of white and brown adipose tissue mRNA transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and fat metabolism. In WAT depots, this was mirrored by mitochodrial oxidative phosphorylation (OXPHOS) protein expression, and increased in vivo fat oxidation measured via CLAMS. ME supplementation also decreased systemic and local inflammation markers. Herein, we demonstrated that novel multi-ingredient nutritional supplements induced significant fat loss independent of physical activity while preserving muscle mass in obese mice. Mechanistically, these MEs appear to act by inducing a browning program in white adipose tissue and decreasing other pathophysiological impairments associated with obesity, including mitochondrial respiration alterations induced by HFD. MDPI 2021-10-22 /pmc/articles/PMC8623014/ /pubmed/34835983 http://dx.doi.org/10.3390/nu13113726 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nederveen, Joshua P. Manta, Katherine Bujak, Adam L. Simone, Alexander C. Fuda, Matthew R. Nilsson, Mats I. Hettinga, Bart P. Hughes, Meghan C. Perry, Christopher G. R. Tarnopolsky, Mark A. A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice |
title | A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice |
title_full | A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice |
title_fullStr | A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice |
title_full_unstemmed | A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice |
title_short | A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice |
title_sort | novel multi-ingredient supplement activates a browning program in white adipose tissue and mitigates weight gain in high-fat diet-fed mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623014/ https://www.ncbi.nlm.nih.gov/pubmed/34835983 http://dx.doi.org/10.3390/nu13113726 |
work_keys_str_mv | AT nederveenjoshuap anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT mantakatherine anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT bujakadaml anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT simonealexanderc anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT fudamatthewr anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT nilssonmatsi anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT hettingabartp anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT hughesmeghanc anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT perrychristophergr anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT tarnopolskymarka anovelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT nederveenjoshuap novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT mantakatherine novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT bujakadaml novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT simonealexanderc novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT fudamatthewr novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT nilssonmatsi novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT hettingabartp novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT hughesmeghanc novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT perrychristophergr novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice AT tarnopolskymarka novelmultiingredientsupplementactivatesabrowningprograminwhiteadiposetissueandmitigatesweightgaininhighfatdietfedmice |