Cargando…
Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism
Continuous sensing of water parameters is of great importance to fluid dynamic progress study in oceans, coastal areas and inland waters. The acoustic tomography technique can perform water temperature field measurements horizontally and vertically using sound wave travel information. The layer-aver...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623029/ https://www.ncbi.nlm.nih.gov/pubmed/34833524 http://dx.doi.org/10.3390/s21227448 |
_version_ | 1784605833637658624 |
---|---|
author | Xu, Shijie Xue, Zhao Xie, Xinyi Huang, Haocai Li, Guangming |
author_facet | Xu, Shijie Xue, Zhao Xie, Xinyi Huang, Haocai Li, Guangming |
author_sort | Xu, Shijie |
collection | PubMed |
description | Continuous sensing of water parameters is of great importance to fluid dynamic progress study in oceans, coastal areas and inland waters. The acoustic tomography technique can perform water temperature field measurements horizontally and vertically using sound wave travel information. The layer-averaged water temperature can also be measured with the acoustic tomography method. However, investigations focusing on the stratified mechanism, which consists of stratification form and its influence on inversion error, are seldom performed. In this study, an acoustic tomography experiment was carried out in a reservoir along two vertical slices to observe the layer-averaged water temperature. Specifically, multi-path sound travel information is identified through ray tracing using high-precision topography data obtained via a ship-mounted ADCP during the experiment. Vertical slices between sound stations are divided into different layers to study layer division inversion methods in different preset types. The inversion method is used to calculate the average water temperature and inversion temperature error of every layer. Different layer methods are studied with a comparison of results. The layer division principle studied in this paper can be used for layer-averaged water temperature sensing with multi-path sound transmission information. |
format | Online Article Text |
id | pubmed-8623029 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86230292021-11-27 Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism Xu, Shijie Xue, Zhao Xie, Xinyi Huang, Haocai Li, Guangming Sensors (Basel) Article Continuous sensing of water parameters is of great importance to fluid dynamic progress study in oceans, coastal areas and inland waters. The acoustic tomography technique can perform water temperature field measurements horizontally and vertically using sound wave travel information. The layer-averaged water temperature can also be measured with the acoustic tomography method. However, investigations focusing on the stratified mechanism, which consists of stratification form and its influence on inversion error, are seldom performed. In this study, an acoustic tomography experiment was carried out in a reservoir along two vertical slices to observe the layer-averaged water temperature. Specifically, multi-path sound travel information is identified through ray tracing using high-precision topography data obtained via a ship-mounted ADCP during the experiment. Vertical slices between sound stations are divided into different layers to study layer division inversion methods in different preset types. The inversion method is used to calculate the average water temperature and inversion temperature error of every layer. Different layer methods are studied with a comparison of results. The layer division principle studied in this paper can be used for layer-averaged water temperature sensing with multi-path sound transmission information. MDPI 2021-11-09 /pmc/articles/PMC8623029/ /pubmed/34833524 http://dx.doi.org/10.3390/s21227448 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xu, Shijie Xue, Zhao Xie, Xinyi Huang, Haocai Li, Guangming Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism |
title | Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism |
title_full | Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism |
title_fullStr | Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism |
title_full_unstemmed | Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism |
title_short | Layer-Averaged Water Temperature Sensing in a Lake by Acoustic Tomography with a Focus on the Inversion Stratification Mechanism |
title_sort | layer-averaged water temperature sensing in a lake by acoustic tomography with a focus on the inversion stratification mechanism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623029/ https://www.ncbi.nlm.nih.gov/pubmed/34833524 http://dx.doi.org/10.3390/s21227448 |
work_keys_str_mv | AT xushijie layeraveragedwatertemperaturesensinginalakebyacoustictomographywithafocusontheinversionstratificationmechanism AT xuezhao layeraveragedwatertemperaturesensinginalakebyacoustictomographywithafocusontheinversionstratificationmechanism AT xiexinyi layeraveragedwatertemperaturesensinginalakebyacoustictomographywithafocusontheinversionstratificationmechanism AT huanghaocai layeraveragedwatertemperaturesensinginalakebyacoustictomographywithafocusontheinversionstratificationmechanism AT liguangming layeraveragedwatertemperaturesensinginalakebyacoustictomographywithafocusontheinversionstratificationmechanism |