Cargando…
Hole Repairing Algorithm for 3D Point Cloud Model of Symmetrical Objects Grasped by the Manipulator
For the engineering application of manipulator grasping objects, mechanical arm occlusion and limited imaging angle produce various holes in the reconstructed 3D point clouds of objects. Acquiring a complete point cloud model of the grasped object plays a very important role in the subsequent task p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623051/ https://www.ncbi.nlm.nih.gov/pubmed/34833633 http://dx.doi.org/10.3390/s21227558 |
Sumario: | For the engineering application of manipulator grasping objects, mechanical arm occlusion and limited imaging angle produce various holes in the reconstructed 3D point clouds of objects. Acquiring a complete point cloud model of the grasped object plays a very important role in the subsequent task planning of the manipulator. This paper proposes a method with which to automatically detect and repair the holes in the 3D point cloud model of symmetrical objects grasped by the manipulator. With the established virtual camera coordinate system and boundary detection, repair and classification of holes, the closed boundaries for the nested holes were detected and classified into two kinds, which correspond to the mechanical claw holes caused by mechanical arm occlusion and the missing surface produced by limited imaging angle. These two kinds of holes were repaired based on surface reconstruction and object symmetry. Experiments on simulated and real point cloud models demonstrate that our approach outperforms the other state-of-the-art 3D point cloud hole repair algorithms. |
---|