Cargando…
Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It
Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this stu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623091/ https://www.ncbi.nlm.nih.gov/pubmed/34835305 http://dx.doi.org/10.3390/microorganisms9112179 |
_version_ | 1784605848505417728 |
---|---|
author | Spinelli, Veronica Ceci, Andrea Dal Bosco, Chiara Gentili, Alessandra Persiani, Anna Maria |
author_facet | Spinelli, Veronica Ceci, Andrea Dal Bosco, Chiara Gentili, Alessandra Persiani, Anna Maria |
author_sort | Spinelli, Veronica |
collection | PubMed |
description | Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose–response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study reports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation. |
format | Online Article Text |
id | pubmed-8623091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86230912021-11-27 Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It Spinelli, Veronica Ceci, Andrea Dal Bosco, Chiara Gentili, Alessandra Persiani, Anna Maria Microorganisms Article Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose–response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study reports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation. MDPI 2021-10-20 /pmc/articles/PMC8623091/ /pubmed/34835305 http://dx.doi.org/10.3390/microorganisms9112179 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Spinelli, Veronica Ceci, Andrea Dal Bosco, Chiara Gentili, Alessandra Persiani, Anna Maria Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It |
title | Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It |
title_full | Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It |
title_fullStr | Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It |
title_full_unstemmed | Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It |
title_short | Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains’ Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It |
title_sort | glyphosate-eating fungi: study on fungal saprotrophic strains’ ability to tolerate and utilise glyphosate as a nutritional source and on the ability of purpureocillium lilacinum to degrade it |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623091/ https://www.ncbi.nlm.nih.gov/pubmed/34835305 http://dx.doi.org/10.3390/microorganisms9112179 |
work_keys_str_mv | AT spinelliveronica glyphosateeatingfungistudyonfungalsaprotrophicstrainsabilitytotolerateandutiliseglyphosateasanutritionalsourceandontheabilityofpurpureocilliumlilacinumtodegradeit AT ceciandrea glyphosateeatingfungistudyonfungalsaprotrophicstrainsabilitytotolerateandutiliseglyphosateasanutritionalsourceandontheabilityofpurpureocilliumlilacinumtodegradeit AT dalboscochiara glyphosateeatingfungistudyonfungalsaprotrophicstrainsabilitytotolerateandutiliseglyphosateasanutritionalsourceandontheabilityofpurpureocilliumlilacinumtodegradeit AT gentilialessandra glyphosateeatingfungistudyonfungalsaprotrophicstrainsabilitytotolerateandutiliseglyphosateasanutritionalsourceandontheabilityofpurpureocilliumlilacinumtodegradeit AT persianiannamaria glyphosateeatingfungistudyonfungalsaprotrophicstrainsabilitytotolerateandutiliseglyphosateasanutritionalsourceandontheabilityofpurpureocilliumlilacinumtodegradeit |