Cargando…
Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time
The surface Electromyography (sEMG) signal contains information about movement intention generated by the human brain, and it is the most intuitive and common solution to control robots, orthotics, prosthetics and rehabilitation equipment. In recent years, gesture decoding based on sEMG signals has...
Autores principales: | Qing, Zengyu, Lu, Zongxing, Cai, Yingjie, Wang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623265/ https://www.ncbi.nlm.nih.gov/pubmed/34833784 http://dx.doi.org/10.3390/s21227713 |
Ejemplares similares
-
Compound motion decoding based on sEMG consisting of gestures, wrist angles, and strength
por: Zhang, Xiaodong, et al.
Publicado: (2022) -
Enhanced Performance for Multi-Forearm Movement Decoding Using Hybrid IMU–sEMG Interface
por: Shahzad, Waseem, et al.
Publicado: (2019) -
sEMG-Based Neural Network Prediction Model Selection of Gesture Fatigue and Dataset Optimization
por: Ma, Fujun, et al.
Publicado: (2020) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019) -
sEMG-Based Gesture Classifier for a Rehabilitation Glove
por: Copaci, Dorin, et al.
Publicado: (2022)