Cargando…
Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of Streptanthus tortuosus
Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb...
Autores principales: | Love, Natalie L. R., Bonnet, Pierre, Goëau, Hervé, Joly, Alexis, Mazer, Susan J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623300/ https://www.ncbi.nlm.nih.gov/pubmed/34834835 http://dx.doi.org/10.3390/plants10112471 |
Ejemplares similares
-
A new phenological metric for use in pheno‐climatic models: A case study using herbarium specimens of Streptanthus tortuosus
por: Love, Natalie L. Rossington, et al.
Publicado: (2019) -
A new fine‐grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction
por: Goëau, Hervé, et al.
Publicado: (2020) -
Going deeper in the automated identification of Herbarium specimens
por: Carranza-Rojas, Jose, et al.
Publicado: (2017) -
Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research
por: Pearson, Katelin D, et al.
Publicado: (2020) -
Toward a large‐scale and deep phenological stage annotation of herbarium specimens: Case studies from temperate, tropical, and equatorial floras
por: Lorieul, Titouan, et al.
Publicado: (2019)