Cargando…
Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera)
SIMPLE SUMMARY: The Pyraloidea is a large superfamily of Lepidoptera in species composition. To date, the higher-level phylogenetic relationships in this group remain unresolved, and many taxa, with taxonomic positions historically established by morphological characters, need to be confirmed throug...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623390/ https://www.ncbi.nlm.nih.gov/pubmed/34821839 http://dx.doi.org/10.3390/insects12111039 |
_version_ | 1784605921360478208 |
---|---|
author | Liu, Xiaomeng Qi, Mujie Xu, Haizhen Wu, Zhipeng Hu, Lizong Yang, Mingsheng Li, Houhun |
author_facet | Liu, Xiaomeng Qi, Mujie Xu, Haizhen Wu, Zhipeng Hu, Lizong Yang, Mingsheng Li, Houhun |
author_sort | Liu, Xiaomeng |
collection | PubMed |
description | SIMPLE SUMMARY: The Pyraloidea is a large superfamily of Lepidoptera in species composition. To date, the higher-level phylogenetic relationships in this group remain unresolved, and many taxa, with taxonomic positions historically established by morphological characters, need to be confirmed through sequencing of DNA, including mitochondrial genome sequences (mitogenomes). Here, we newly generated nine complete mitogenomes for Pyraloidea that shared identical gene content, and arrangements that are typical of Lepidoptera. The current phylogenetic results confirmed previous multilocus studies, indicating the effectiveness of mitogenomes for inference of Pyraloidea higher-level relationships. Unexpectedly, Orybina Snellen was robustly placed as basal to the remaining Pyralidae taxa, rather than nested in the Pyralinae of Pyralidae as morphologically defined and placed. Our results bring a greater understanding to Pyraloidea phylogeny, and highlight the necessity of sequencing more pyraloid taxa to reevaluate their phylogenetic positions. ABSTRACT: The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the “non-PS clade” were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence. |
format | Online Article Text |
id | pubmed-8623390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86233902021-11-27 Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) Liu, Xiaomeng Qi, Mujie Xu, Haizhen Wu, Zhipeng Hu, Lizong Yang, Mingsheng Li, Houhun Insects Article SIMPLE SUMMARY: The Pyraloidea is a large superfamily of Lepidoptera in species composition. To date, the higher-level phylogenetic relationships in this group remain unresolved, and many taxa, with taxonomic positions historically established by morphological characters, need to be confirmed through sequencing of DNA, including mitochondrial genome sequences (mitogenomes). Here, we newly generated nine complete mitogenomes for Pyraloidea that shared identical gene content, and arrangements that are typical of Lepidoptera. The current phylogenetic results confirmed previous multilocus studies, indicating the effectiveness of mitogenomes for inference of Pyraloidea higher-level relationships. Unexpectedly, Orybina Snellen was robustly placed as basal to the remaining Pyralidae taxa, rather than nested in the Pyralinae of Pyralidae as morphologically defined and placed. Our results bring a greater understanding to Pyraloidea phylogeny, and highlight the necessity of sequencing more pyraloid taxa to reevaluate their phylogenetic positions. ABSTRACT: The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the “non-PS clade” were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence. MDPI 2021-11-18 /pmc/articles/PMC8623390/ /pubmed/34821839 http://dx.doi.org/10.3390/insects12111039 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Xiaomeng Qi, Mujie Xu, Haizhen Wu, Zhipeng Hu, Lizong Yang, Mingsheng Li, Houhun Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) |
title | Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) |
title_full | Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) |
title_fullStr | Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) |
title_full_unstemmed | Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) |
title_short | Nine Mitochondrial Genomes of the Pyraloidea and Their Phylogenetic Implications (Lepidoptera) |
title_sort | nine mitochondrial genomes of the pyraloidea and their phylogenetic implications (lepidoptera) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623390/ https://www.ncbi.nlm.nih.gov/pubmed/34821839 http://dx.doi.org/10.3390/insects12111039 |
work_keys_str_mv | AT liuxiaomeng ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera AT qimujie ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera AT xuhaizhen ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera AT wuzhipeng ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera AT hulizong ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera AT yangmingsheng ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera AT lihouhun ninemitochondrialgenomesofthepyraloideaandtheirphylogeneticimplicationslepidoptera |