Cargando…
Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments
The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home environments can help therapists ascertain if exercises have been performed as prescribed. Whilst wearable devices have been shown to provide advantages such as high accuracy and precision during monitoring activities, d...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623414/ https://www.ncbi.nlm.nih.gov/pubmed/34833636 http://dx.doi.org/10.3390/s21227560 |
_version_ | 1784605927227260928 |
---|---|
author | Ekerete, Idongesit Garcia-Constantino, Matias Diaz-Skeete, Yohanca Nugent, Chris McLaughlin, James |
author_facet | Ekerete, Idongesit Garcia-Constantino, Matias Diaz-Skeete, Yohanca Nugent, Chris McLaughlin, James |
author_sort | Ekerete, Idongesit |
collection | PubMed |
description | The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home environments can help therapists ascertain if exercises have been performed as prescribed. Whilst wearable devices have been shown to provide advantages such as high accuracy and precision during monitoring activities, disadvantages such as limited battery life and users’ inability to remember to charge and wear the devices are often the challenges for their usage. In addition, video cameras, which are notable for high frame rates and granularity, are not privacy-friendly. Therefore, this paper proposes the use and fusion of privacy-friendly and Unobtrusive Sensing Solutions (USSs) for data collection and processing during SPAREs in home environments. The present work aims to monitor SPAREs such as dorsiflexion, plantarflexion, inversion, and eversion using radar and thermal sensors. The main contributions of this paper include (i) privacy-friendly monitoring of SPAREs in a home environment, (ii) fusion of SPAREs data from homogeneous and heterogeneous USSs, and (iii) analysis and comparison of results from single, homogeneous, and heterogeneous USSs. Experimental results indicated the advantages of using heterogeneous USSs and data fusion. Cluster-based analysis of data gleaned from the sensors indicated an average classification accuracy of 96.9% with Neural Network, AdaBoost, and Support Vector Machine, amongst others. |
format | Online Article Text |
id | pubmed-8623414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86234142021-11-27 Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments Ekerete, Idongesit Garcia-Constantino, Matias Diaz-Skeete, Yohanca Nugent, Chris McLaughlin, James Sensors (Basel) Article The ability to monitor Sprained Ankle Rehabilitation Exercises (SPAREs) in home environments can help therapists ascertain if exercises have been performed as prescribed. Whilst wearable devices have been shown to provide advantages such as high accuracy and precision during monitoring activities, disadvantages such as limited battery life and users’ inability to remember to charge and wear the devices are often the challenges for their usage. In addition, video cameras, which are notable for high frame rates and granularity, are not privacy-friendly. Therefore, this paper proposes the use and fusion of privacy-friendly and Unobtrusive Sensing Solutions (USSs) for data collection and processing during SPAREs in home environments. The present work aims to monitor SPAREs such as dorsiflexion, plantarflexion, inversion, and eversion using radar and thermal sensors. The main contributions of this paper include (i) privacy-friendly monitoring of SPAREs in a home environment, (ii) fusion of SPAREs data from homogeneous and heterogeneous USSs, and (iii) analysis and comparison of results from single, homogeneous, and heterogeneous USSs. Experimental results indicated the advantages of using heterogeneous USSs and data fusion. Cluster-based analysis of data gleaned from the sensors indicated an average classification accuracy of 96.9% with Neural Network, AdaBoost, and Support Vector Machine, amongst others. MDPI 2021-11-13 /pmc/articles/PMC8623414/ /pubmed/34833636 http://dx.doi.org/10.3390/s21227560 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ekerete, Idongesit Garcia-Constantino, Matias Diaz-Skeete, Yohanca Nugent, Chris McLaughlin, James Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments |
title | Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments |
title_full | Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments |
title_fullStr | Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments |
title_full_unstemmed | Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments |
title_short | Fusion of Unobtrusive Sensing Solutions for Sprained Ankle Rehabilitation Exercises Monitoring in Home Environments |
title_sort | fusion of unobtrusive sensing solutions for sprained ankle rehabilitation exercises monitoring in home environments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623414/ https://www.ncbi.nlm.nih.gov/pubmed/34833636 http://dx.doi.org/10.3390/s21227560 |
work_keys_str_mv | AT ekereteidongesit fusionofunobtrusivesensingsolutionsforsprainedanklerehabilitationexercisesmonitoringinhomeenvironments AT garciaconstantinomatias fusionofunobtrusivesensingsolutionsforsprainedanklerehabilitationexercisesmonitoringinhomeenvironments AT diazskeeteyohanca fusionofunobtrusivesensingsolutionsforsprainedanklerehabilitationexercisesmonitoringinhomeenvironments AT nugentchris fusionofunobtrusivesensingsolutionsforsprainedanklerehabilitationexercisesmonitoringinhomeenvironments AT mclaughlinjames fusionofunobtrusivesensingsolutionsforsprainedanklerehabilitationexercisesmonitoringinhomeenvironments |