Cargando…

Poultry Feather Waste as Bio-Based Cross-Linking Additive for Ethylene Propylene Diene Rubber

Most rubbers used today rely on sulphur as a cross-linking agent and carbon black from fossil resources to modify the mechanical properties. A very promising substitute can be found in natural keratins such as feathers. These are not only tough, but also contain a relevant amount of sulphur in the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Brenner, Markus, Weichold, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623415/
https://www.ncbi.nlm.nih.gov/pubmed/34833207
http://dx.doi.org/10.3390/polym13223908
Descripción
Sumario:Most rubbers used today rely on sulphur as a cross-linking agent and carbon black from fossil resources to modify the mechanical properties. A very promising substitute can be found in natural keratins such as feathers. These are not only tough, but also contain a relevant amount of sulphur in the form of disulphide bridges. The present study shows that these can be activated under vulcanisation conditions and then bind covalently to EPDM rubber to form a cross-linked network. Feathers were cut into lengths of 0.08, 0.2, and 1 mm and incorporated at 38, 69, or 100 phr into EPDM mixtures containing either no carbon black or no carbon black nor sulphur. The presence of feather cuttings increases the tensile and compressive strength as well as the hardness, and reduces the rebound resilience. Due to their high (approximately 17%) nitrogen content, the feathers also improve the thermal stability of the composite, as the main degradation step is shifted from 400 °C to 470 °C and the decomposition is significantly slowed down. Since elastomers are a large market and feathers in particular are a high-volume waste, the combination of these two offers enormous ecological and economic prospects.