Cargando…
Machine Learning-Based Classification of Dependence in Ambulation in Stroke Patients Using Smartphone Video Data
The goal of this study was to develop a framework to classify dependence in ambulation by employing a deep model in a 3D convolutional neural network (3D-CNN) using video data recorded by a smartphone during inpatient rehabilitation therapy in stroke patients. Among 2311 video clips, 1218 walk actio...
Autores principales: | Lee, Jong Taek, Park, Eunhee, Jung, Tae-Du |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623599/ https://www.ncbi.nlm.nih.gov/pubmed/34834432 http://dx.doi.org/10.3390/jpm11111080 |
Ejemplares similares
-
Automatic Detection of the Pharyngeal Phase in Raw Videos for the Videofluoroscopic Swallowing Study Using Efficient Data Collection and 3D Convolutional Networks †
por: Lee, Jong Taek, et al.
Publicado: (2019) -
Machine learning analysis to automatically measure response time of pharyngeal swallowing reflex in videofluoroscopic swallowing study
por: Lee, Jong Taek, et al.
Publicado: (2020) -
Algorithmic assessment of shoulder function using smartphone video capture and machine learning
por: Darevsky, David M., et al.
Publicado: (2023) -
Effects of Self RehAbilitation Video Exercises (SAVE) on Functional Restorations in Patients with Subacute Stroke
por: Jung, Seung-Hwan, et al.
Publicado: (2021) -
Interpretable deep learning for the remote characterisation of ambulation in multiple sclerosis using smartphones
por: Creagh, Andrew P., et al.
Publicado: (2021)