Cargando…

Influence of Rootstock on the Leaf Volatile Organic Compounds of Citrus Scion Is More Pronounced after the Infestation with Diaphorina citri

Nowadays, citrus greening or Huanglongbing is considered the most destructive disease in the citrus industry worldwide. In the Americas and Asia, the disease is caused by the putative pathogen, ‘Candidatus Liberibacter asiaticus’ and transmitted by the psyllid vector, Diaphorina citri. It has been s...

Descripción completa

Detalles Bibliográficos
Autores principales: Jones, Shelley E., Killiny, Nabil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623621/
https://www.ncbi.nlm.nih.gov/pubmed/34834785
http://dx.doi.org/10.3390/plants10112422
Descripción
Sumario:Nowadays, citrus greening or Huanglongbing is considered the most destructive disease in the citrus industry worldwide. In the Americas and Asia, the disease is caused by the putative pathogen, ‘Candidatus Liberibacter asiaticus’ and transmitted by the psyllid vector, Diaphorina citri. It has been shown that volatile organic compounds (VOC) that are released from citrus leaves attract the psyllid vector. Herein, we tested whether the rootstock influenced the stored VOC profile in the scion leaves and if these influences were altered after infestation with D. citri. The VOC profiles of the hexane-extracted leaves of the mandarin hybrid ‘Sugar Belle’ that were grafted on three different rootstocks (C-35, sour orange (SO), and US-897) with and without infestation with D. citri were studied. The GC-MS analysis showed that the scion VOC profiles of the non-infested control trees were similar to each other, and rootstock was not a strong influence. However, after one month of infestation with D. citri, clear differences in the scion VOC profiles appeared that were rootstock dependent. Although the total scion leaf VOC content did not differ between the three rootstocks, the infestation increased scion monoterpenes significantly on US-897 and C-35 rootstock, increased terpene alcohols on US-897 and SO rootstock, and increased sesquiterpenes on SO. Infestation with D. citri significantly reduced fatty acids and fatty acid esters across all of the rootstocks. Therefore, our results suggest that rootstock choice could influence scions with an inducible volatile defense by enhancing the amounts of VOCs that are available for repelling vectors or for signaling to their natural enemies or parasitoids. According to this study, US-897 may be the best choice among the three that were studied herein, due to its diverse and robust VOC defense response to infestation with D. citri.