Cargando…
Machine Learning Model to Identify Sepsis Patients in the Emergency Department: Algorithm Development and Validation
Accurate stratification of sepsis can effectively guide the triage of patient care and shared decision making in the emergency department (ED). However, previous research on sepsis identification models focused mainly on ICU patients, and discrepancies in model performance between the development an...
Autores principales: | Lin, Pei-Chen, Chen, Kuo-Tai, Chen, Huan-Chieh, Islam, Md. Mohaimenul, Lin, Ming-Chin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623760/ https://www.ncbi.nlm.nih.gov/pubmed/34834406 http://dx.doi.org/10.3390/jpm11111055 |
Ejemplares similares
-
Development and Validation of Machine Learning Models to Classify Artery Stenosis for Automated Generating Ultrasound Report
por: Yeh, Chih-Yang, et al.
Publicado: (2022) -
Mutual-Aid Mobile App for Emergency Care: Feasibility Study
por: Chien, Shuo-Chen, et al.
Publicado: (2020) -
Independent Validation of Sepsis Index for Sepsis Screening in the Emergency Department
por: Agnello, Luisa, et al.
Publicado: (2021) -
Deep-ADCA: Development and Validation of Deep Learning Model for Automated Diagnosis Code Assignment Using Clinical Notes in Electronic Medical Records
por: Masud, Jakir Hossain Bhuiyan, et al.
Publicado: (2022) -
Seeking Sepsis in the Emergency Department- Identifying Barriers to Delivery of the Sepsis 6
por: Bentley, James, et al.
Publicado: (2016)