Cargando…
A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation
Market basket prediction, which is the basis of product recommendation systems, is the concept of predicting what customers will buy in the next shopping basket based on analysis of their historical shopping records. Although product recommendation systems develop rapidly and have good performance i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623780/ https://www.ncbi.nlm.nih.gov/pubmed/34828128 http://dx.doi.org/10.3390/e23111430 |
_version_ | 1784606014368120832 |
---|---|
author | Chen, Guisheng Li, Zhanshan |
author_facet | Chen, Guisheng Li, Zhanshan |
author_sort | Chen, Guisheng |
collection | PubMed |
description | Market basket prediction, which is the basis of product recommendation systems, is the concept of predicting what customers will buy in the next shopping basket based on analysis of their historical shopping records. Although product recommendation systems develop rapidly and have good performance in practice, state-of-the-art algorithms still have plenty of room for improvement. In this paper, we propose a new algorithm combining pattern prediction and preference prediction. In pattern prediction, sequential rules, periodic patterns and association rules are mined and probability models are established based on their statistical characteristics, e.g., the distribution of periods of a periodic pattern, to make a more precise prediction. Products that have a higher probability will have priority to be recommended. If the quantity of recommended products is insufficient, then we make a preference prediction to select more products. Preference prediction is based on the frequency and tendency of products that appear in customers’ individual shopping records, where tendency is a new concept to reflect the evolution of customers’ shopping preferences. Experiments show that our algorithm outperforms those of the baseline methods and state-of-the-art methods on three of four real-world transaction sequence datasets. |
format | Online Article Text |
id | pubmed-8623780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86237802021-11-27 A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation Chen, Guisheng Li, Zhanshan Entropy (Basel) Article Market basket prediction, which is the basis of product recommendation systems, is the concept of predicting what customers will buy in the next shopping basket based on analysis of their historical shopping records. Although product recommendation systems develop rapidly and have good performance in practice, state-of-the-art algorithms still have plenty of room for improvement. In this paper, we propose a new algorithm combining pattern prediction and preference prediction. In pattern prediction, sequential rules, periodic patterns and association rules are mined and probability models are established based on their statistical characteristics, e.g., the distribution of periods of a periodic pattern, to make a more precise prediction. Products that have a higher probability will have priority to be recommended. If the quantity of recommended products is insufficient, then we make a preference prediction to select more products. Preference prediction is based on the frequency and tendency of products that appear in customers’ individual shopping records, where tendency is a new concept to reflect the evolution of customers’ shopping preferences. Experiments show that our algorithm outperforms those of the baseline methods and state-of-the-art methods on three of four real-world transaction sequence datasets. MDPI 2021-10-29 /pmc/articles/PMC8623780/ /pubmed/34828128 http://dx.doi.org/10.3390/e23111430 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Guisheng Li, Zhanshan A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation |
title | A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation |
title_full | A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation |
title_fullStr | A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation |
title_full_unstemmed | A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation |
title_short | A New Method Combining Pattern Prediction and Preference Prediction for Next Basket Recommendation |
title_sort | new method combining pattern prediction and preference prediction for next basket recommendation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623780/ https://www.ncbi.nlm.nih.gov/pubmed/34828128 http://dx.doi.org/10.3390/e23111430 |
work_keys_str_mv | AT chenguisheng anewmethodcombiningpatternpredictionandpreferencepredictionfornextbasketrecommendation AT lizhanshan anewmethodcombiningpatternpredictionandpreferencepredictionfornextbasketrecommendation AT chenguisheng newmethodcombiningpatternpredictionandpreferencepredictionfornextbasketrecommendation AT lizhanshan newmethodcombiningpatternpredictionandpreferencepredictionfornextbasketrecommendation |