Cargando…
Accurate Single-Cell Clustering through Ensemble Similarity Learning
Single-cell sequencing provides novel means to interpret the transcriptomic profiles of individual cells. To obtain in-depth analysis of single-cell sequencing, it requires effective computational methods to accurately predict single-cell clusters because single-cell sequencing techniques only provi...
Autores principales: | Jeong, Hyundoo, Shin, Sungtae, Yeom, Hong-Gi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623803/ https://www.ncbi.nlm.nih.gov/pubmed/34828276 http://dx.doi.org/10.3390/genes12111670 |
Ejemplares similares
-
GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning
por: Ha, Jun Seo, et al.
Publicado: (2023) -
F-Value Time-Frequency Analysis: Between-Within Variance Analysis
por: Yeom, Hong Gi, et al.
Publicado: (2021) -
Accurate multiple network alignment through context-sensitive random walk
por: Jeong, Hyundoo, et al.
Publicado: (2015) -
CUFID-query: accurate network querying through random walk based network flow estimation
por: Jeong, Hyundoo, et al.
Publicado: (2017) -
Generating highly accurate prediction hypotheses through collaborative ensemble learning
por: Arsov, Nino, et al.
Publicado: (2017)