Cargando…
DW-UNet: Loss Balance under Local-Patch for 3D Infection Segmentation from COVID-19 CT Images
(1) Background: COVID-19 has been global epidemic. This work aims to extract 3D infection from COVID-19 CT images; (2) Methods: Firstly, COVID-19 CT images are processed with lung region extraction and data enhancement. In this strategy, gradient changes of voxels in different directions respond to...
Autores principales: | Chen, Cheng, Zhou, Jiancang, Zhou, Kangneng, Wang, Zhiliang, Xiao, Ruoxiu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623821/ https://www.ncbi.nlm.nih.gov/pubmed/34829289 http://dx.doi.org/10.3390/diagnostics11111942 |
Ejemplares similares
-
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet
por: Saeedizadeh, Narges, et al.
Publicado: (2021) -
MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images
por: Chi, Jianning, et al.
Publicado: (2022) -
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
Lung and Infection CT-Scan-Based Segmentation with 3D UNet Architecture and Its Modification
por: Asnawi, Mohammad Hamid, et al.
Publicado: (2023) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022)