Cargando…
Machine Learning for Predicting the Risk for Childhood Asthma Using Prenatal, Perinatal, Postnatal and Environmental Factors
The prevalence rate for childhood asthma and its associated risk factors vary significantly across countries and regions. In the case of Morocco, the scarcity of available medical data makes scientific research on diseases such as asthma very challenging. In this paper, we build machine learning mod...
Autores principales: | Jeddi, Zineb, Gryech, Ihsane, Ghogho, Mounir, EL Hammoumi, Maryame, Mahraoui, Chafiq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623896/ https://www.ncbi.nlm.nih.gov/pubmed/34828510 http://dx.doi.org/10.3390/healthcare9111464 |
Ejemplares similares
-
An Exploration of Features Impacting Respiratory Diseases in Urban Areas
por: Gryech, Ihsane, et al.
Publicado: (2022) -
MoreAir: A Low-Cost Urban Air Pollution Monitoring System
por: Gryech, Ihsane, et al.
Publicado: (2020) -
The pharmacist’s role in managing and ameliorating childhood’s asthma care: a descriptive and transversal study about 104 pharmacists in the city of Rabat in Morocco
por: Iraqi, Bousayna, et al.
Publicado: (2018) -
Patient with CHARGE syndrome
por: Yajouri, Abdelhakim El, et al.
Publicado: (2018) -
Tracheobronchial calcifications in a child
por: Rahmoun, Houda, et al.
Publicado: (2020)