Cargando…
SAMLDroid: A Static Taint Analysis and Machine Learning Combined High-Accuracy Method for Identifying Android Apps with Location Privacy Leakage Risks
Insecure applications (apps) are increasingly used to steal users’ location information for illegal purposes, which has aroused great concern in recent years. Although the existing methods, i.e., static and dynamic taint analysis, have shown great merit for identifying such apps, which mainly rely o...
Autores principales: | Hu, Guangwu, Zhang, Bin, Xiao, Xi, Zhang, Weizhe, Liao, Long, Zhou, Ying, Yan, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8623917/ https://www.ncbi.nlm.nih.gov/pubmed/34828187 http://dx.doi.org/10.3390/e23111489 |
Ejemplares similares
-
A Fog Computing Solution for Context-Based Privacy Leakage Detection for Android Healthcare Devices
por: Gu, Jingjing, et al.
Publicado: (2019) -
Internet Financial Data Security and Economic Risk Prevention for Android Application Privacy Leakage Detection
por: Wang, Yun, et al.
Publicado: (2022) -
Distributed Detection of Malicious Android Apps While Preserving Privacy Using Federated Learning
por: Lee, Suchul
Publicado: (2023) -
On the data privacy practices of Android OEMs
por: Liu, Haoyu, et al.
Publicado: (2023) -
Android apps marketing: secrets to selling your Android app
por: Hughes, Jeffrey F
Publicado: (2011)