Cargando…
Reconfigurable Architecture and Dataflow for Memory Traffic Minimization of CNNs Computation
Computation of convolutional neural network (CNN) requires a significant amount of memory access, which leads to lots of energy consumption. As the increase of neural network scale, this phenomenon is further obvious, the energy consumption of memory access and data migration between on-chip buffer...
Autores principales: | Cheng, Wei-Kai, Liu, Xiang-Yi, Wu, Hsin-Tzu, Pai, Hsin-Yi, Chung, Po-Yao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624143/ https://www.ncbi.nlm.nih.gov/pubmed/34832777 http://dx.doi.org/10.3390/mi12111365 |
Ejemplares similares
-
Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers
por: Milankovic, Ivan L., et al.
Publicado: (2017) -
Dataflow Computing for Data-Intensive Applications
por: Mencer, Oskar
Publicado: (2012) -
Dataflow Computing for Data-Intensive Applications
por: Bonomi, Ernesto
Publicado: (2012) -
Dataflow processing
por: Hurson, A R, et al.
Publicado: (2015) -
Sensing and Detection of Traffic Signs Using CNNs: An Assessment on Their Performance
por: Canese, Lorenzo, et al.
Publicado: (2022)