Cargando…
A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis
The kinase interaction motif protein tyrosine phosphatases (KIM-PTPs), HePTP, PTPSL and STEP, are involved in the negative regulation of mitogen-activated protein kinase (MAPK) signalling pathways and are important therapeutic targets for a number of diseases. We have used VSpipe, a virtual screenin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624330/ https://www.ncbi.nlm.nih.gov/pubmed/34830087 http://dx.doi.org/10.3390/ijms222212206 |
_version_ | 1784606147994451968 |
---|---|
author | Adams, James Thornton, Benjamin P. Tabernero, Lydia |
author_facet | Adams, James Thornton, Benjamin P. Tabernero, Lydia |
author_sort | Adams, James |
collection | PubMed |
description | The kinase interaction motif protein tyrosine phosphatases (KIM-PTPs), HePTP, PTPSL and STEP, are involved in the negative regulation of mitogen-activated protein kinase (MAPK) signalling pathways and are important therapeutic targets for a number of diseases. We have used VSpipe, a virtual screening pipeline, to identify a ligand cluster distribution that is unique to this subfamily of PTPs. Several clusters map onto KIM-PTP specific sequence motifs in contrast to the cluster distribution obtained for PTP1B, a classic PTP that mapped to general PTP motifs. Importantly, the ligand clusters coincide with previously reported functional and substrate binding sites in KIM-PTPs. Assessment of the KIM-PTP specific clusters, using ligand efficiency index (LEI) plots generated by the VSpipe, ascertained that the binders in these clusters reside in a more drug-like chemical–biological space than those at the active site. LEI analysis showed differences between clusters across all KIM-PTPs, highlighting a distinct and specific profile for each phosphatase. The most druggable cluster sites are unexplored allosteric functional sites unique to each target. Exploiting these sites may facilitate the delivery of inhibitors with improved drug-like properties, with selectivity amongst the KIM-PTPs and over other classical PTPs. |
format | Online Article Text |
id | pubmed-8624330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86243302021-11-27 A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis Adams, James Thornton, Benjamin P. Tabernero, Lydia Int J Mol Sci Article The kinase interaction motif protein tyrosine phosphatases (KIM-PTPs), HePTP, PTPSL and STEP, are involved in the negative regulation of mitogen-activated protein kinase (MAPK) signalling pathways and are important therapeutic targets for a number of diseases. We have used VSpipe, a virtual screening pipeline, to identify a ligand cluster distribution that is unique to this subfamily of PTPs. Several clusters map onto KIM-PTP specific sequence motifs in contrast to the cluster distribution obtained for PTP1B, a classic PTP that mapped to general PTP motifs. Importantly, the ligand clusters coincide with previously reported functional and substrate binding sites in KIM-PTPs. Assessment of the KIM-PTP specific clusters, using ligand efficiency index (LEI) plots generated by the VSpipe, ascertained that the binders in these clusters reside in a more drug-like chemical–biological space than those at the active site. LEI analysis showed differences between clusters across all KIM-PTPs, highlighting a distinct and specific profile for each phosphatase. The most druggable cluster sites are unexplored allosteric functional sites unique to each target. Exploiting these sites may facilitate the delivery of inhibitors with improved drug-like properties, with selectivity amongst the KIM-PTPs and over other classical PTPs. MDPI 2021-11-11 /pmc/articles/PMC8624330/ /pubmed/34830087 http://dx.doi.org/10.3390/ijms222212206 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Adams, James Thornton, Benjamin P. Tabernero, Lydia A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis |
title | A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis |
title_full | A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis |
title_fullStr | A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis |
title_full_unstemmed | A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis |
title_short | A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis |
title_sort | new paradigm for kim-ptp drug discovery: identification of allosteric sites with potential for selective inhibition using virtual screening and lei analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624330/ https://www.ncbi.nlm.nih.gov/pubmed/34830087 http://dx.doi.org/10.3390/ijms222212206 |
work_keys_str_mv | AT adamsjames anewparadigmforkimptpdrugdiscoveryidentificationofallostericsiteswithpotentialforselectiveinhibitionusingvirtualscreeningandleianalysis AT thorntonbenjaminp anewparadigmforkimptpdrugdiscoveryidentificationofallostericsiteswithpotentialforselectiveinhibitionusingvirtualscreeningandleianalysis AT tabernerolydia anewparadigmforkimptpdrugdiscoveryidentificationofallostericsiteswithpotentialforselectiveinhibitionusingvirtualscreeningandleianalysis AT adamsjames newparadigmforkimptpdrugdiscoveryidentificationofallostericsiteswithpotentialforselectiveinhibitionusingvirtualscreeningandleianalysis AT thorntonbenjaminp newparadigmforkimptpdrugdiscoveryidentificationofallostericsiteswithpotentialforselectiveinhibitionusingvirtualscreeningandleianalysis AT tabernerolydia newparadigmforkimptpdrugdiscoveryidentificationofallostericsiteswithpotentialforselectiveinhibitionusingvirtualscreeningandleianalysis |