Cargando…

Lactoferrin Ameliorates Dry Eye Disease Potentially through Enhancement of Short-Chain Fatty Acid Production by Gut Microbiota in Mice

Lactoferrin is a glycoprotein found at high concentrations within exocrine secretions, including tears. Low levels of lactoferrin have been implicated in the loss of tear secretion and ageing. Furthermore, lactoferrin possesses a range of functionalities, including anti-inflammatory properties and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Connell, Samuel, Kawashima, Motoko, Nakamura, Shigeru, Imada, Toshihiro, Yamamoto, Hiromitsu, Tsubota, Kazuo, Fukuda, Shinji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624394/
https://www.ncbi.nlm.nih.gov/pubmed/34830266
http://dx.doi.org/10.3390/ijms222212384
Descripción
Sumario:Lactoferrin is a glycoprotein found at high concentrations within exocrine secretions, including tears. Low levels of lactoferrin have been implicated in the loss of tear secretion and ageing. Furthermore, lactoferrin possesses a range of functionalities, including anti-inflammatory properties and the ability to modulate the gut microbiota. Expanding evidence demonstrates a crucial role of the gut microbiota in immune regulation and development. The specific composition of bacterial species of the gut has a profound influence on local and systemic inflammation, leading to a protective capacity against a number of inflammatory diseases, potentially by the induction of regulatory immune cells. In this study, we demonstrated that oral administration of lactoferrin maintains tear secretion in a restraint and desiccating stress induced mouse model of dry eye disease. Furthermore, we revealed that lactoferrin induces the reduction of inflammatory cytokines, modulates gut microbiota, and induces short-chain fatty acid production. Whereas, the antibiotic vancomycin abrogates the effects of lactoferrin on dry eye disease and significantly reduces short-chain fatty acid concentrations. Therefore, this protective effect of LF against a mice model of DED may be explained by our observations of an altered gut microbiota and an enhanced production of immunomodulatory short-chain fatty acids.