Cargando…

Organo-Functionalization: An Effective Method in Enhancing the Separation and Antifouling Performance of Thin-Film Nanocomposite Membranes by Improving the Uniform Dispersion of Palygorskite Nanoparticles

Recently, palygorskite (Pal) has become a promising new membrane additive in flux enhancement and fouling reduction, which is an environmentally friendly nanoclay material under the 2:1 layer composition with 1D tubular structure. However, the aggregation of Pal due to the intermolecular forces is s...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Liu, Zhang, Qianwen, Wang, Qikun, Ding, Wande, Zhang, Kefeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624518/
https://www.ncbi.nlm.nih.gov/pubmed/34832118
http://dx.doi.org/10.3390/membranes11110889
Descripción
Sumario:Recently, palygorskite (Pal) has become a promising new membrane additive in flux enhancement and fouling reduction, which is an environmentally friendly nanoclay material under the 2:1 layer composition with 1D tubular structure. However, the aggregation of Pal due to the intermolecular forces is still an obstacle to be solved in improving membrane performance. Herein, Pal nanoparticles were chemically modified by KH550 to weaken the aggregation and improve the dispersibility, and then incorporated into the organic phase to prepare thin-film nanocomposite (TFN) membranes. The results showed that the organo-functionalization could effectively improve the membrane hydrophilicity and dispersion of Pal nanoparticles in the polyamide layer, which contributed to the enhanced water flux (from 25 to 38 L/m(2)·h), unchanged salt rejection (98.0%) and better antifouling capacity (91% flux recovery rate), which suggested that the organo-functionalization of nanoparticles was an efficient method in further enhancing membrane performance