Cargando…
An Overdispersed Black-Box Variational Bayesian–Kalman Filter with Inaccurate Noise Second-Order Statistics
Aimed at the problems in which the performance of filters derived from a hypothetical model will decline or the cost of time of the filters derived from a posterior model will increase when prior knowledge and second-order statistics of noise are uncertain, a new filter is proposed. In this paper, a...
Autores principales: | Cao, Lin, Zhang, Chuyuan, Zhao, Zongmin, Wang, Dongfeng, Du, Kangning, Fu, Chong, Gu, Jianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624531/ https://www.ncbi.nlm.nih.gov/pubmed/34833746 http://dx.doi.org/10.3390/s21227673 |
Ejemplares similares
-
Strong Tracking PHD Filter Based on Variational Bayesian with Inaccurate Process and Measurement Noise Covariance
por: Hu, Zhentao, et al.
Publicado: (2021) -
Variational Bayesian-Based Improved Maximum Mixture Correntropy Kalman Filter for Non-Gaussian Noise
por: Li, Xuyou, et al.
Publicado: (2022) -
Bayesian Noise Modelling for State Estimation of the Spread of COVID-19 in Saudi Arabia with Extended Kalman Filters
por: Alyami, Lamia, et al.
Publicado: (2023) -
Measurement Noise Covariance-Adapting Kalman Filters for Varying Sensor Noise Situations
por: Chhabra, Anirudh, et al.
Publicado: (2021) -
Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction
por: Lam, Frank, et al.
Publicado: (2017)