Cargando…
A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624566/ https://www.ncbi.nlm.nih.gov/pubmed/34829395 http://dx.doi.org/10.3390/diagnostics11112043 |
_version_ | 1784606205901012992 |
---|---|
author | Ammari, Samy Sallé de Chou, Raoul Balleyguier, Corinne Chouzenoux, Emilie Touat, Mehdi Quillent, Arnaud Dumont, Sarah Bockel, Sophie Garcia, Gabriel C. T. E. Elhaik, Mickael Francois, Bidault Borget, Valentin Lassau, Nathalie Khettab, Mohamed Assi, Tarek |
author_facet | Ammari, Samy Sallé de Chou, Raoul Balleyguier, Corinne Chouzenoux, Emilie Touat, Mehdi Quillent, Arnaud Dumont, Sarah Bockel, Sophie Garcia, Gabriel C. T. E. Elhaik, Mickael Francois, Bidault Borget, Valentin Lassau, Nathalie Khettab, Mohamed Assi, Tarek |
author_sort | Ammari, Samy |
collection | PubMed |
description | Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning (ML) algorithms for survival prediction of GBM patient. We identified a radiomic signature on a training-set composed of data from the 2019 BraTS challenge (210 patients) from MRI retrieved at diagnosis. Then, using this signature along with the age of the patients for training classification models, we obtained on test-sets AUCs of 0.85, 0.74 and 0.58 (0.92, 0.88 and 0.75 on the training-sets) for survival at 9-, 12- and 15-months, respectively. This signature was then validated on an independent cohort of 116 GBM patients with confirmed disease relapse for the prediction of patients surviving less or more than the median OS of 22 months. Our model insured an AUC of 0.71 (0.65 on train). The Kaplan–Meier method showed significant OS difference between groups (log-rank p = 0.05). These results suggest that radiomic signatures may improve survival outcome predictions in GBM thus creating a solid clinical tool for tailoring therapy in this population. |
format | Online Article Text |
id | pubmed-8624566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86245662021-11-27 A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI Ammari, Samy Sallé de Chou, Raoul Balleyguier, Corinne Chouzenoux, Emilie Touat, Mehdi Quillent, Arnaud Dumont, Sarah Bockel, Sophie Garcia, Gabriel C. T. E. Elhaik, Mickael Francois, Bidault Borget, Valentin Lassau, Nathalie Khettab, Mohamed Assi, Tarek Diagnostics (Basel) Article Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adult patients with a median survival of around one year. Prediction of survival outcomes in GBM patients could represent a huge step in treatment personalization. The objective of this study was to develop machine learning (ML) algorithms for survival prediction of GBM patient. We identified a radiomic signature on a training-set composed of data from the 2019 BraTS challenge (210 patients) from MRI retrieved at diagnosis. Then, using this signature along with the age of the patients for training classification models, we obtained on test-sets AUCs of 0.85, 0.74 and 0.58 (0.92, 0.88 and 0.75 on the training-sets) for survival at 9-, 12- and 15-months, respectively. This signature was then validated on an independent cohort of 116 GBM patients with confirmed disease relapse for the prediction of patients surviving less or more than the median OS of 22 months. Our model insured an AUC of 0.71 (0.65 on train). The Kaplan–Meier method showed significant OS difference between groups (log-rank p = 0.05). These results suggest that radiomic signatures may improve survival outcome predictions in GBM thus creating a solid clinical tool for tailoring therapy in this population. MDPI 2021-11-04 /pmc/articles/PMC8624566/ /pubmed/34829395 http://dx.doi.org/10.3390/diagnostics11112043 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ammari, Samy Sallé de Chou, Raoul Balleyguier, Corinne Chouzenoux, Emilie Touat, Mehdi Quillent, Arnaud Dumont, Sarah Bockel, Sophie Garcia, Gabriel C. T. E. Elhaik, Mickael Francois, Bidault Borget, Valentin Lassau, Nathalie Khettab, Mohamed Assi, Tarek A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI |
title | A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI |
title_full | A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI |
title_fullStr | A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI |
title_full_unstemmed | A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI |
title_short | A Predictive Clinical-Radiomics Nomogram for Survival Prediction of Glioblastoma Using MRI |
title_sort | predictive clinical-radiomics nomogram for survival prediction of glioblastoma using mri |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624566/ https://www.ncbi.nlm.nih.gov/pubmed/34829395 http://dx.doi.org/10.3390/diagnostics11112043 |
work_keys_str_mv | AT ammarisamy apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT salledechouraoul apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT balleyguiercorinne apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT chouzenouxemilie apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT touatmehdi apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT quillentarnaud apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT dumontsarah apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT bockelsophie apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT garciagabrielcte apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT elhaikmickael apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT francoisbidault apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT borgetvalentin apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT lassaunathalie apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT khettabmohamed apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT assitarek apredictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT ammarisamy predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT salledechouraoul predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT balleyguiercorinne predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT chouzenouxemilie predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT touatmehdi predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT quillentarnaud predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT dumontsarah predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT bockelsophie predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT garciagabrielcte predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT elhaikmickael predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT francoisbidault predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT borgetvalentin predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT lassaunathalie predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT khettabmohamed predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri AT assitarek predictiveclinicalradiomicsnomogramforsurvivalpredictionofglioblastomausingmri |