Cargando…

Fluorescent Biosensors Based on Silicon Nanowires

Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies comple...

Descripción completa

Detalles Bibliográficos
Autores principales: Leonardi, Antonio Alessio, Lo Faro, Maria José, Fazio, Barbara, Spinella, Corrado, Conoci, Sabrina, Livreri, Patrizia, Irrera, Alessia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624671/
https://www.ncbi.nlm.nih.gov/pubmed/34835735
http://dx.doi.org/10.3390/nano11112970
Descripción
Sumario:Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability, and real-time in situ analysis. In fluorescent sensors, Si NWs are employed as substrate and coupled with several fluorophores, NWs can be used as quenchers in stem-loop configuration, and have recently been used for direct fluorescent sensing. In this review, an overview on fluorescent sensors based on Si NWs is presented, analyzing the literature of the field and highlighting the advantages and drawbacks for each strategy.