Cargando…
Monitoring Potentially Toxic Element Pollution in Three Wheat-Grown Areas with a Long History of Industrial Activity and Assessment of Their Effect on Human Health in Central Greece
Agricultural lands, especially those where wheat is cultivated, in the vicinity of intense anthropogenic activities may be laden with potentially toxic elements (PTEs), resulting in increased risk for human health. In this study we monitored three regions located in central Greece, currently cultiva...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624685/ https://www.ncbi.nlm.nih.gov/pubmed/34822684 http://dx.doi.org/10.3390/toxics9110293 |
Sumario: | Agricultural lands, especially those where wheat is cultivated, in the vicinity of intense anthropogenic activities may be laden with potentially toxic elements (PTEs), resulting in increased risk for human health. In this study we monitored three regions located in central Greece, currently cultivated with wheat: Domokos and Eretria, two areas with abandoned chromium mines, but never studied before, and the industrial area of Volos, near a major steel factory. All soils were alkaline with medium CaCO(3) content. As expected, Cr was extremely high in the first two areas (705.2 in Eretria and 777.5 mg kg(−1) in Domokos); Ni was also found elevated (1227 in Eretria, 1315 in Domokos and 257.6 mg kg(−1) in the steel factory), while other harmful metals (Cd, Cu, Pb and Zn) were rather low. As a result, pollution load index, a cumulative index showing the contamination level of an area, was higher than 1.0 in all three areas (Eretria = 2.20, Domokos = 2.28, and steel factory = 1.61), indicating high contamination and anthropogenic inputs. As for the wheat parts (shoots and grains), they were found to have no elevated concentrations of any of the measured metals in all three study areas, probably due to the alkaline soil pH that decelerates metal mobility. This was also confirmed by the very low soil-to-plant transfer coefficient values for all metals. In assessing the possible risk concerning human health, we found that the soil-to-human pathway would induce no significant risk (exhibited by hazard index of less than 1.0), while the risk from grain-to-human resulted in considerable risk for human health in the steel factory of Volos (where HI > 1.0). Our findings suggest that rural areas never studied before with a history in some offensive anthropogenic activity can prove to be a contamination hotspot; we regard this study as a pivotal for similarly never-visited-before areas casually cultivated with wheat (or other important crops for human nutrition). We further recognize the need for a more in-depth study that would acknowledge the geochemical speciation of the studied metals and also monitor other important crops and their possible uptake of PTEs. |
---|