Cargando…
Presentation Attack Detection on Limited-Resource Devices Using Deep Neural Classifiers Trained on Consistent Spectrogram Fragments
The presented paper is concerned with detection of presentation attacks against unsupervised remote biometric speaker verification, using a well-known challenge–response scheme. We propose a novel approach to convolutional phoneme classifier training, which ensures high phoneme recognition accuracy...
Autores principales: | Kubicki, Kacper, Kapusta, Paweł, Ślot, Krzysztof |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624699/ https://www.ncbi.nlm.nih.gov/pubmed/34833803 http://dx.doi.org/10.3390/s21227728 |
Ejemplares similares
-
Automated annotation of birdsong with a neural network that segments spectrograms
por: Cohen, Yarden, et al.
Publicado: (2022) -
Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network
por: Zhou, Quan, et al.
Publicado: (2021) -
Radar-Spectrogram-Based UAV Classification Using Convolutional Neural Networks
por: Park, Dongsuk, et al.
Publicado: (2020) -
Classification System of National Music Rhythm Spectrogram Based on Biological Neural Network
por: Mi, Dan, et al.
Publicado: (2022) -
Classification of nucleic acid amplification on ISFET arrays using spectrogram-based neural networks
por: Tripathi, Prateek, et al.
Publicado: (2023)