Cargando…
Electrochemistry/Photoelectrochemistry-Based Immunosensing and Aptasensing of Carcinoembryonic Antigen
Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624776/ https://www.ncbi.nlm.nih.gov/pubmed/34833818 http://dx.doi.org/10.3390/s21227742 |
Sumario: | Recently, electrochemistry- and photoelectrochemistry-based biosensors have been regarded as powerful tools for trace monitoring of carcinoembryonic antigen (CEA) due to the fact of their intrinsic advantages (e.g., high sensitivity, excellent selectivity, small background, and low cost), which play an important role in early cancer screening and diagnosis and benefit people’s increasing demands for medical and health services. Thus, this mini-review will introduce the current trends in electrochemical and photoelectrochemical biosensors for CEA assay and classify them into two main categories according to the interactions between target and biorecognition elements: immunosensors and aptasensors. Some recent illustrative examples are summarized for interested readers, accompanied by simple descriptions of the related signaling strategies, advanced materials, and detection modes. Finally, the development prospects and challenges of future electrochemical and photoelectrochemical biosensors are considered. |
---|