Cargando…

Non-Contact Multiscale Analysis of a DPP 3D-Printed Injection Die for Investment Casting

The investment casting method supported with 3D-printing technology, allows the production of unit castings or prototypes with properties most similar to those of final products. Due to the complexity of the process, it is very important to control the dimensions in the initial stages of the process...

Descripción completa

Detalles Bibliográficos
Autores principales: Kroma, Arkadiusz, Mendak, Michał, Jakubowicz, Michał, Gapiński, Bartosz, Popielarski, Paweł
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624798/
https://www.ncbi.nlm.nih.gov/pubmed/34832159
http://dx.doi.org/10.3390/ma14226758
Descripción
Sumario:The investment casting method supported with 3D-printing technology, allows the production of unit castings or prototypes with properties most similar to those of final products. Due to the complexity of the process, it is very important to control the dimensions in the initial stages of the process. This paper presents a comparison of non-contact measurement systems applied for testing of photopolymer 3D-printed injection die used in investment casting. Due to the required high quality of the surface parameters, the authors decided to use the DPP (Daylight Polymer Printing) 3D-printing technology to produce an analyzed injection die. The X-ray CT, Structured blue-light scanner and focus variation microscope measurement techniques were used to avoid any additional damages to the injection die that may arise during the measurement. The main objective of the research was to analyze the possibility of using non-contact measurement systems as a tool for analyzing the quality of the surface of a 3D-printed injection die. Dimensional accuracy analysis, form and position deviations, defect detection, and comparison with a CAD model were carried out.