Cargando…
Bird Species Identification Using Spectrogram Based on Multi-Channel Fusion of DCNNs
Deep convolutional neural networks (DCNNs) have achieved breakthrough performance on bird species identification using a spectrogram of bird vocalization. Aiming at the imbalance of the bird vocalization dataset, a single feature identification model (SFIM) with residual blocks and modified, weighte...
Autores principales: | Zhang, Feiyu, Zhang, Luyang, Chen, Hongxiang, Xie, Jiangjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624801/ https://www.ncbi.nlm.nih.gov/pubmed/34828205 http://dx.doi.org/10.3390/e23111507 |
Ejemplares similares
-
A Novel Method for COVID-19 Detection Based on DCNNs and Hierarchical Structure
por: Li, Yuqin, et al.
Publicado: (2022) -
Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species
por: Ludeña-Choez, Jimmy, et al.
Publicado: (2017) -
A review on modern defect detection models using DCNNs – Deep convolutional neural networks()
por: Tulbure, Andrei-Alexandru, et al.
Publicado: (2021) -
CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis
por: Khan, Md. Sakib, et al.
Publicado: (2022) -
Silent Speech Decoding Using Spectrogram Features Based on Neuromuscular Activities
por: Wang, You, et al.
Publicado: (2020)