Cargando…

Obstructive Sleep Apnea as an Acceleration Trigger of Cellular Senescence Processes through Telomere Shortening

Obstructive sleep apnea (OSA) is chronic disorder which is characterized by recurrent pauses of breathing during sleep which leads to hypoxia and its two main pathological sequelae: oxidative stress and chronic inflammation. Both are also associated with cellular senescence. As OSA patients present...

Descripción completa

Detalles Bibliográficos
Autores principales: Turkiewicz, Szymon, Ditmer, Marta, Sochal, Marcin, Białasiewicz, Piotr, Strzelecki, Dominik, Gabryelska, Agata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624921/
https://www.ncbi.nlm.nih.gov/pubmed/34830418
http://dx.doi.org/10.3390/ijms222212536
Descripción
Sumario:Obstructive sleep apnea (OSA) is chronic disorder which is characterized by recurrent pauses of breathing during sleep which leads to hypoxia and its two main pathological sequelae: oxidative stress and chronic inflammation. Both are also associated with cellular senescence. As OSA patients present with higher prevalence of age-related disorders, such as atrial hypertension or diabetes mellitus type 2, a relationship between OSA and accelerated aging is observable. Furthermore, it has been established that these OSA are associated with telomere shortening. This process in OSA is likely caused by increased oxidative DNA damage due to increased reactive oxygen species levels, DNA repair disruptions, hypoxia, chronic inflammation, and circadian clock disturbances. The aim of the review is to summarize study outcomes on changes in leukocyte telomere length (LTL) in OSA patients and describe possible molecular mechanisms which connect cellular senescence and the pathophysiology of OSA. The majority of OSA patients are characterized by LTL attrition due to oxidative stress, hypoxia and inflammation, which make a kind of positive feedback loop, and circadian clock disturbance.