Cargando…
Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts
Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624983/ https://www.ncbi.nlm.nih.gov/pubmed/34828335 http://dx.doi.org/10.3390/genes12111729 |
_version_ | 1784606306727886848 |
---|---|
author | Thomas, Jared R. Sloan, Kourtney Cave, Kelsey Wallace, Joseph M. Roper, Randall J. |
author_facet | Thomas, Jared R. Sloan, Kourtney Cave, Kelsey Wallace, Joseph M. Roper, Randall J. |
author_sort | Thomas, Jared R. |
collection | PubMed |
description | Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1a(fl/wt)) were mated with male Osx-Cre(+) (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a(+/+/Osx-Cre) P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a(+/+/+) (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a(+/+/Osx-Cre) (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS. |
format | Online Article Text |
id | pubmed-8624983 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86249832021-11-27 Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts Thomas, Jared R. Sloan, Kourtney Cave, Kelsey Wallace, Joseph M. Roper, Randall J. Genes (Basel) Article Trisomy 21 (Ts21) causes alterations in skeletal development resulting in decreased bone mass, shortened stature and weaker bones in individuals with Down syndrome (DS). There is a sexual dimorphism in bone mineral density (BMD) deficits associated with DS with males displaying earlier deficits than females. The relationships between causative trisomic genes, cellular mechanisms, and influence of sex in DS skeletal abnormalities remain unknown. One hypothesis is that the low bone turnover phenotype observed in DS results from attenuated osteoblast function, contributing to impaired trabecular architecture, altered cortical geometry, and decreased mineralization. DYRK1A, found in three copies in humans with DS, Ts65Dn, and Dp1Tyb DS model mice, has been implicated in the development of postnatal skeletal phenotypes associated with DS. Reduced copy number of Dyrk1a to euploid levels from conception in an otherwise trisomic Ts65Dn mice resulted in a rescue of appendicular bone deficits, suggesting DYRK1A contributes to skeletal development and homeostasis. We hypothesized that reduction of Dyrk1a copy number in trisomic osteoblasts would improve cellular function and resultant skeletal structural anomalies in trisomic mice. Female mice with a floxed Dyrk1a gene (Ts65Dn,Dyrk1a(fl/wt)) were mated with male Osx-Cre(+) (expressed in osteoblasts beginning around E13.5) mice, resulting in reduced Dyrk1a copy number in mature osteoblasts in Ts65Dn,Dyrk1a(+/+/Osx-Cre) P42 male and female trisomic and euploid mice, compared with littermate controls. Male and female Ts65Dn,Dyrk1a(+/+/+) (3 copies of DYRK1A in osteoblasts) and Ts65Dn,Dyrk1a(+/+/Osx-Cre) (2 copies of Dyrk1a in osteoblasts) displayed similar defects in both trabecular architecture and cortical geometry, with no improvements with reduced Dyrk1a in osteoblasts. This suggests that trisomic DYRK1A does not affect osteoblast function in a cell-autonomous manner at or before P42. Although male Dp1Tyb and Ts65Dn mice exhibit similar skeletal deficits at P42 in both trabecular and cortical bone compartments between euploid and trisomic mice, female Ts65Dn mice exhibit significant cortical and trabecular deficits at P42, in contrast to an absence of genotype effect in female Dp1Tyb mice in trabecular bone. Taken together, these data suggest skeletal deficits in DS mouse models and are sex and age dependent, and influenced by strain effects, but are not solely caused by the overexpression of Dyrk1a in osteoblasts. Identifying molecular and cellular mechanisms, disrupted by gene dosage imbalance, that are involved in the development of skeletal phenotypes associated with DS could help to design therapies to rescue skeletal deficiencies seen in DS. MDPI 2021-10-28 /pmc/articles/PMC8624983/ /pubmed/34828335 http://dx.doi.org/10.3390/genes12111729 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Thomas, Jared R. Sloan, Kourtney Cave, Kelsey Wallace, Joseph M. Roper, Randall J. Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts |
title | Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts |
title_full | Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts |
title_fullStr | Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts |
title_full_unstemmed | Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts |
title_short | Skeletal Deficits in Male and Female down Syndrome Model Mice Arise Independent of Normalized Dyrk1a Expression in Osteoblasts |
title_sort | skeletal deficits in male and female down syndrome model mice arise independent of normalized dyrk1a expression in osteoblasts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624983/ https://www.ncbi.nlm.nih.gov/pubmed/34828335 http://dx.doi.org/10.3390/genes12111729 |
work_keys_str_mv | AT thomasjaredr skeletaldeficitsinmaleandfemaledownsyndromemodelmiceariseindependentofnormalizeddyrk1aexpressioninosteoblasts AT sloankourtney skeletaldeficitsinmaleandfemaledownsyndromemodelmiceariseindependentofnormalizeddyrk1aexpressioninosteoblasts AT cavekelsey skeletaldeficitsinmaleandfemaledownsyndromemodelmiceariseindependentofnormalizeddyrk1aexpressioninosteoblasts AT wallacejosephm skeletaldeficitsinmaleandfemaledownsyndromemodelmiceariseindependentofnormalizeddyrk1aexpressioninosteoblasts AT roperrandallj skeletaldeficitsinmaleandfemaledownsyndromemodelmiceariseindependentofnormalizeddyrk1aexpressioninosteoblasts |