Cargando…

Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances

With the advances in new materials, equipment, and processes, additive manufacturing (AM) has gained increased importance for producing the final parts that are used in several industrial areas, such as automotive, aeronautics, and health. The constant development of 3D-printing equipment allows for...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinho, Ana C., Piedade, Ana P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625028/
https://www.ncbi.nlm.nih.gov/pubmed/34833329
http://dx.doi.org/10.3390/polym13224030
_version_ 1784606317918289920
author Pinho, Ana C.
Piedade, Ana P.
author_facet Pinho, Ana C.
Piedade, Ana P.
author_sort Pinho, Ana C.
collection PubMed
description With the advances in new materials, equipment, and processes, additive manufacturing (AM) has gained increased importance for producing the final parts that are used in several industrial areas, such as automotive, aeronautics, and health. The constant development of 3D-printing equipment allows for printing multi-material systems as sandwich specimens using, for example, double-nozzle configurations. The present study aimed to compare the mechanical behavior of multi-material specimens that were produced using a double-nozzle 3D printer. The materials that were included in this study were the copolymer acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), poly(methyl methacrylate) (PMMA), and thermoplastic polyurethane (TPU). The configuration of the sandwich structures consisted of a core of TPU and the outer skins made of one of the other three materials. The mechanical behavior was evaluated through three-point bending (3PB) and transverse impact tests and compared with mono-material printed specimens. The effect of aging in artificial saliva was evaluated for all the processed materials. The main conclusion of this study was that the aging process did not significantly alter the mechanical properties for mono-materials, except for PMMA, where the maximum flexural stress decreased. In the sandwich structures, the TPU core had a softening effect, inducing a significant increase in the resilience and resistance to transverse impact. The obtained results are quite promising for applications in biomedical devices, such as protective mouthguards or teeth aligners. In these specific applications, the changes in the mechanical properties with time and with the contact of saliva assume particular importance.
format Online
Article
Text
id pubmed-8625028
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86250282021-11-27 Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances Pinho, Ana C. Piedade, Ana P. Polymers (Basel) Article With the advances in new materials, equipment, and processes, additive manufacturing (AM) has gained increased importance for producing the final parts that are used in several industrial areas, such as automotive, aeronautics, and health. The constant development of 3D-printing equipment allows for printing multi-material systems as sandwich specimens using, for example, double-nozzle configurations. The present study aimed to compare the mechanical behavior of multi-material specimens that were produced using a double-nozzle 3D printer. The materials that were included in this study were the copolymer acrylonitrile-butadiene-styrene (ABS), high-impact polystyrene (HIPS), poly(methyl methacrylate) (PMMA), and thermoplastic polyurethane (TPU). The configuration of the sandwich structures consisted of a core of TPU and the outer skins made of one of the other three materials. The mechanical behavior was evaluated through three-point bending (3PB) and transverse impact tests and compared with mono-material printed specimens. The effect of aging in artificial saliva was evaluated for all the processed materials. The main conclusion of this study was that the aging process did not significantly alter the mechanical properties for mono-materials, except for PMMA, where the maximum flexural stress decreased. In the sandwich structures, the TPU core had a softening effect, inducing a significant increase in the resilience and resistance to transverse impact. The obtained results are quite promising for applications in biomedical devices, such as protective mouthguards or teeth aligners. In these specific applications, the changes in the mechanical properties with time and with the contact of saliva assume particular importance. MDPI 2021-11-21 /pmc/articles/PMC8625028/ /pubmed/34833329 http://dx.doi.org/10.3390/polym13224030 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pinho, Ana C.
Piedade, Ana P.
Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances
title Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances
title_full Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances
title_fullStr Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances
title_full_unstemmed Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances
title_short Sandwich Multi-Material 3D-Printed Polymers: Influence of Aging on the Impact and Flexure Resistances
title_sort sandwich multi-material 3d-printed polymers: influence of aging on the impact and flexure resistances
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625028/
https://www.ncbi.nlm.nih.gov/pubmed/34833329
http://dx.doi.org/10.3390/polym13224030
work_keys_str_mv AT pinhoanac sandwichmultimaterial3dprintedpolymersinfluenceofagingontheimpactandflexureresistances
AT piedadeanap sandwichmultimaterial3dprintedpolymersinfluenceofagingontheimpactandflexureresistances