Cargando…

Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning

Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Chi-Ken, Shafto, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625033/
https://www.ncbi.nlm.nih.gov/pubmed/34828243
http://dx.doi.org/10.3390/e23111545