Cargando…
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
Deep Gaussian Processes (DGPs) were proposed as an expressive Bayesian model capable of a mathematically grounded estimation of uncertainty. The expressivity of DPGs results from not only the compositional character but the distribution propagation within the hierarchy. Recently, it was pointed out...
Autores principales: | Lu, Chi-Ken, Shafto, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8625033/ https://www.ncbi.nlm.nih.gov/pubmed/34828243 http://dx.doi.org/10.3390/e23111545 |
Ejemplares similares
-
Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Bayesian Uncertainty Quantification with Multi-Fidelity Data and Gaussian Processes for Impedance Cardiography of Aortic Dissection
por: Ranftl, Sascha, et al.
Publicado: (2019) -
Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification
por: Gander, Lia, et al.
Publicado: (2022) -
mGPfusion: predicting protein stability changes with Gaussian process kernel learning and data fusion
por: Jokinen, Emmi, et al.
Publicado: (2018) -
Counting manatee aggregations using deep neural networks and Anisotropic Gaussian Kernel
por: Wang, Zhiqiang, et al.
Publicado: (2023)